MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madebdaylemold Structured version   Visualization version   GIF version

Theorem madebdaylemold 27844
Description: Lemma for madebday 27846. If the inductive hypothesis of madebday 27846 is satisfied, the converse of oldbdayim 27835 holds. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
madebdaylemold ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴𝑋 ∈ ( O ‘𝐴)))
Distinct variable groups:   𝐴,𝑏   𝑦,𝑏,𝑋
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem madebdaylemold
StepHypRef Expression
1 fveq2 6822 . . . . . . . . 9 (𝑦 = 𝑋 → ( bday 𝑦) = ( bday 𝑋))
21sseq1d 3966 . . . . . . . 8 (𝑦 = 𝑋 → (( bday 𝑦) ⊆ 𝑏 ↔ ( bday 𝑋) ⊆ 𝑏))
3 eleq1 2819 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 ∈ ( M ‘𝑏) ↔ 𝑋 ∈ ( M ‘𝑏)))
42, 3imbi12d 344 . . . . . . 7 (𝑦 = 𝑋 → ((( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ↔ (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏))))
54rspcv 3573 . . . . . 6 (𝑋 No → (∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) → (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏))))
65ralimdv 3146 . . . . 5 (𝑋 No → (∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) → ∀𝑏𝐴 (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏))))
76impcom 407 . . . 4 ((∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ∀𝑏𝐴 (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏)))
8 rexim 3073 . . . 4 (∀𝑏𝐴 (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏)) → (∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏 → ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
97, 8syl 17 . . 3 ((∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏 → ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
1093adant1 1130 . 2 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏 → ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
11 bdayelon 27716 . . . 4 ( bday 𝑋) ∈ On
12 onelssex 6355 . . . 4 ((( bday 𝑋) ∈ On ∧ 𝐴 ∈ On) → (( bday 𝑋) ∈ 𝐴 ↔ ∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏))
1311, 12mpan 690 . . 3 (𝐴 ∈ On → (( bday 𝑋) ∈ 𝐴 ↔ ∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏))
14133ad2ant1 1133 . 2 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴 ↔ ∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏))
15 elold 27815 . . 3 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
16153ad2ant1 1133 . 2 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
1710, 14, 163imtr4d 294 1 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴𝑋 ∈ ( O ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902  Oncon0 6306  cfv 6481   No csur 27579   bday cbday 27581   M cmade 27784   O cold 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27582  df-slt 27583  df-bday 27584  df-sslt 27722  df-scut 27724  df-made 27789  df-old 27790
This theorem is referenced by:  madebdaylemlrcut  27845  oldbday  27847
  Copyright terms: Public domain W3C validator