| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > madebdaylemold | Structured version Visualization version GIF version | ||
| Description: Lemma for madebday 27868. If the inductive hypothesis of madebday 27868 is satisfied, the converse of oldbdayim 27857 holds. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| madebdaylemold | ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . . . . . . 9 ⊢ (𝑦 = 𝑋 → ( bday ‘𝑦) = ( bday ‘𝑋)) | |
| 2 | 1 | sseq1d 3995 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → (( bday ‘𝑦) ⊆ 𝑏 ↔ ( bday ‘𝑋) ⊆ 𝑏)) |
| 3 | eleq1 2823 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → (𝑦 ∈ ( M ‘𝑏) ↔ 𝑋 ∈ ( M ‘𝑏))) | |
| 4 | 2, 3 | imbi12d 344 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → ((( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ↔ (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)))) |
| 5 | 4 | rspcv 3602 | . . . . . 6 ⊢ (𝑋 ∈ No → (∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) → (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)))) |
| 6 | 5 | ralimdv 3155 | . . . . 5 ⊢ (𝑋 ∈ No → (∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) → ∀𝑏 ∈ 𝐴 (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)))) |
| 7 | 6 | impcom 407 | . . . 4 ⊢ ((∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → ∀𝑏 ∈ 𝐴 (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏))) |
| 8 | rexim 3078 | . . . 4 ⊢ (∀𝑏 ∈ 𝐴 (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)) → (∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏 → ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ ((∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏 → ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| 10 | 9 | 3adant1 1130 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏 → ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| 11 | bdayelon 27745 | . . . 4 ⊢ ( bday ‘𝑋) ∈ On | |
| 12 | onelssex 6406 | . . . 4 ⊢ ((( bday ‘𝑋) ∈ On ∧ 𝐴 ∈ On) → (( bday ‘𝑋) ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏)) | |
| 13 | 11, 12 | mpan 690 | . . 3 ⊢ (𝐴 ∈ On → (( bday ‘𝑋) ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏)) |
| 14 | 13 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏)) |
| 15 | elold 27838 | . . 3 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | |
| 16 | 15 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| 17 | 10, 14, 16 | 3imtr4d 294 | 1 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ⊆ wss 3931 Oncon0 6357 ‘cfv 6536 No csur 27608 bday cbday 27610 M cmade 27807 O cold 27808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-1o 8485 df-2o 8486 df-no 27611 df-slt 27612 df-bday 27613 df-sslt 27750 df-scut 27752 df-made 27812 df-old 27813 |
| This theorem is referenced by: madebdaylemlrcut 27867 oldbday 27869 |
| Copyright terms: Public domain | W3C validator |