Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > madebdaylemold | Structured version Visualization version GIF version |
Description: Lemma for madebday 33736. If the inductive hypothesis of madebday 33736 is satisfied, the converse of oldbdayim 33727 holds. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
madebdaylemold | ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6687 | . . . . . . . . 9 ⊢ (𝑦 = 𝑋 → ( bday ‘𝑦) = ( bday ‘𝑋)) | |
2 | 1 | sseq1d 3918 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → (( bday ‘𝑦) ⊆ 𝑏 ↔ ( bday ‘𝑋) ⊆ 𝑏)) |
3 | eleq1 2821 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → (𝑦 ∈ ( M ‘𝑏) ↔ 𝑋 ∈ ( M ‘𝑏))) | |
4 | 2, 3 | imbi12d 348 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → ((( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ↔ (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)))) |
5 | 4 | rspcv 3524 | . . . . . 6 ⊢ (𝑋 ∈ No → (∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) → (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)))) |
6 | 5 | ralimdv 3093 | . . . . 5 ⊢ (𝑋 ∈ No → (∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) → ∀𝑏 ∈ 𝐴 (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)))) |
7 | 6 | impcom 411 | . . . 4 ⊢ ((∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → ∀𝑏 ∈ 𝐴 (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏))) |
8 | rexim 3155 | . . . 4 ⊢ (∀𝑏 ∈ 𝐴 (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)) → (∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏 → ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ ((∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏 → ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
10 | 9 | 3adant1 1131 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏 → ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
11 | bdayelon 33627 | . . . 4 ⊢ ( bday ‘𝑋) ∈ On | |
12 | onelssex 33247 | . . . 4 ⊢ ((( bday ‘𝑋) ∈ On ∧ 𝐴 ∈ On) → (( bday ‘𝑋) ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏)) | |
13 | 11, 12 | mpan 690 | . . 3 ⊢ (𝐴 ∈ On → (( bday ‘𝑋) ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏)) |
14 | 13 | 3ad2ant1 1134 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏)) |
15 | elold 33709 | . . 3 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | |
16 | 15 | 3ad2ant1 1134 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
17 | 10, 14, 16 | 3imtr4d 297 | 1 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ∃wrex 3055 ⊆ wss 3853 Oncon0 6183 ‘cfv 6350 No csur 33499 bday cbday 33501 M cmade 33682 O cold 33683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-wrecs 7989 df-recs 8050 df-1o 8144 df-2o 8145 df-no 33502 df-slt 33503 df-bday 33504 df-sslt 33632 df-scut 33634 df-made 33687 df-old 33688 |
This theorem is referenced by: madebdaylemlrcut 33735 oldbday 33737 |
Copyright terms: Public domain | W3C validator |