MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madebdaylemold Structured version   Visualization version   GIF version

Theorem madebdaylemold 27830
Description: Lemma for madebday 27832. If the inductive hypothesis of madebday 27832 is satisfied, the converse of oldbdayim 27821 holds. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
madebdaylemold ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴𝑋 ∈ ( O ‘𝐴)))
Distinct variable groups:   𝐴,𝑏   𝑦,𝑏,𝑋
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem madebdaylemold
StepHypRef Expression
1 fveq2 6826 . . . . . . . . 9 (𝑦 = 𝑋 → ( bday 𝑦) = ( bday 𝑋))
21sseq1d 3969 . . . . . . . 8 (𝑦 = 𝑋 → (( bday 𝑦) ⊆ 𝑏 ↔ ( bday 𝑋) ⊆ 𝑏))
3 eleq1 2816 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 ∈ ( M ‘𝑏) ↔ 𝑋 ∈ ( M ‘𝑏)))
42, 3imbi12d 344 . . . . . . 7 (𝑦 = 𝑋 → ((( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ↔ (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏))))
54rspcv 3575 . . . . . 6 (𝑋 No → (∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) → (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏))))
65ralimdv 3143 . . . . 5 (𝑋 No → (∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) → ∀𝑏𝐴 (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏))))
76impcom 407 . . . 4 ((∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ∀𝑏𝐴 (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏)))
8 rexim 3070 . . . 4 (∀𝑏𝐴 (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏)) → (∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏 → ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
97, 8syl 17 . . 3 ((∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏 → ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
1093adant1 1130 . 2 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏 → ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
11 bdayelon 27704 . . . 4 ( bday 𝑋) ∈ On
12 onelssex 6360 . . . 4 ((( bday 𝑋) ∈ On ∧ 𝐴 ∈ On) → (( bday 𝑋) ∈ 𝐴 ↔ ∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏))
1311, 12mpan 690 . . 3 (𝐴 ∈ On → (( bday 𝑋) ∈ 𝐴 ↔ ∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏))
14133ad2ant1 1133 . 2 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴 ↔ ∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏))
15 elold 27801 . . 3 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
16153ad2ant1 1133 . 2 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
1710, 14, 163imtr4d 294 1 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴𝑋 ∈ ( O ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3905  Oncon0 6311  cfv 6486   No csur 27567   bday cbday 27569   M cmade 27770   O cold 27771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27710  df-scut 27712  df-made 27775  df-old 27776
This theorem is referenced by:  madebdaylemlrcut  27831  oldbday  27833
  Copyright terms: Public domain W3C validator