| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > madebdaylemold | Structured version Visualization version GIF version | ||
| Description: Lemma for madebday 27811. If the inductive hypothesis of madebday 27811 is satisfied, the converse of oldbdayim 27800 holds. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| madebdaylemold | ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑦 = 𝑋 → ( bday ‘𝑦) = ( bday ‘𝑋)) | |
| 2 | 1 | sseq1d 3978 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → (( bday ‘𝑦) ⊆ 𝑏 ↔ ( bday ‘𝑋) ⊆ 𝑏)) |
| 3 | eleq1 2816 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → (𝑦 ∈ ( M ‘𝑏) ↔ 𝑋 ∈ ( M ‘𝑏))) | |
| 4 | 2, 3 | imbi12d 344 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → ((( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ↔ (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)))) |
| 5 | 4 | rspcv 3584 | . . . . . 6 ⊢ (𝑋 ∈ No → (∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) → (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)))) |
| 6 | 5 | ralimdv 3147 | . . . . 5 ⊢ (𝑋 ∈ No → (∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) → ∀𝑏 ∈ 𝐴 (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)))) |
| 7 | 6 | impcom 407 | . . . 4 ⊢ ((∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → ∀𝑏 ∈ 𝐴 (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏))) |
| 8 | rexim 3070 | . . . 4 ⊢ (∀𝑏 ∈ 𝐴 (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)) → (∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏 → ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ ((∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏 → ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| 10 | 9 | 3adant1 1130 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏 → ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| 11 | bdayelon 27688 | . . . 4 ⊢ ( bday ‘𝑋) ∈ On | |
| 12 | onelssex 6381 | . . . 4 ⊢ ((( bday ‘𝑋) ∈ On ∧ 𝐴 ∈ On) → (( bday ‘𝑋) ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏)) | |
| 13 | 11, 12 | mpan 690 | . . 3 ⊢ (𝐴 ∈ On → (( bday ‘𝑋) ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏)) |
| 14 | 13 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏)) |
| 15 | elold 27781 | . . 3 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | |
| 16 | 15 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| 17 | 10, 14, 16 | 3imtr4d 294 | 1 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 Oncon0 6332 ‘cfv 6511 No csur 27551 bday cbday 27553 M cmade 27750 O cold 27751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-made 27755 df-old 27756 |
| This theorem is referenced by: madebdaylemlrcut 27810 oldbday 27812 |
| Copyright terms: Public domain | W3C validator |