| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > madebdaylemold | Structured version Visualization version GIF version | ||
| Description: Lemma for madebday 27787. If the inductive hypothesis of madebday 27787 is satisfied, the converse of oldbdayim 27776 holds. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| madebdaylemold | ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6840 | . . . . . . . . 9 ⊢ (𝑦 = 𝑋 → ( bday ‘𝑦) = ( bday ‘𝑋)) | |
| 2 | 1 | sseq1d 3975 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → (( bday ‘𝑦) ⊆ 𝑏 ↔ ( bday ‘𝑋) ⊆ 𝑏)) |
| 3 | eleq1 2816 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → (𝑦 ∈ ( M ‘𝑏) ↔ 𝑋 ∈ ( M ‘𝑏))) | |
| 4 | 2, 3 | imbi12d 344 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → ((( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ↔ (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)))) |
| 5 | 4 | rspcv 3581 | . . . . . 6 ⊢ (𝑋 ∈ No → (∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) → (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)))) |
| 6 | 5 | ralimdv 3147 | . . . . 5 ⊢ (𝑋 ∈ No → (∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) → ∀𝑏 ∈ 𝐴 (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)))) |
| 7 | 6 | impcom 407 | . . . 4 ⊢ ((∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → ∀𝑏 ∈ 𝐴 (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏))) |
| 8 | rexim 3070 | . . . 4 ⊢ (∀𝑏 ∈ 𝐴 (( bday ‘𝑋) ⊆ 𝑏 → 𝑋 ∈ ( M ‘𝑏)) → (∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏 → ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ ((∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏 → ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| 10 | 9 | 3adant1 1130 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏 → ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| 11 | bdayelon 27664 | . . . 4 ⊢ ( bday ‘𝑋) ∈ On | |
| 12 | onelssex 6369 | . . . 4 ⊢ ((( bday ‘𝑋) ∈ On ∧ 𝐴 ∈ On) → (( bday ‘𝑋) ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏)) | |
| 13 | 11, 12 | mpan 690 | . . 3 ⊢ (𝐴 ∈ On → (( bday ‘𝑋) ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏)) |
| 14 | 13 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐴 ( bday ‘𝑋) ⊆ 𝑏)) |
| 15 | elold 27757 | . . 3 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | |
| 16 | 15 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| 17 | 10, 14, 16 | 3imtr4d 294 | 1 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 Oncon0 6320 ‘cfv 6499 No csur 27527 bday cbday 27529 M cmade 27726 O cold 27727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-1o 8411 df-2o 8412 df-no 27530 df-slt 27531 df-bday 27532 df-sslt 27669 df-scut 27671 df-made 27731 df-old 27732 |
| This theorem is referenced by: madebdaylemlrcut 27786 oldbday 27788 |
| Copyright terms: Public domain | W3C validator |