MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madebdaylemold Structured version   Visualization version   GIF version

Theorem madebdaylemold 27630
Description: Lemma for madebday 27632. If the inductive hypothesis of madebday 27632 is satisfied, the converse of oldbdayim 27621 holds. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
madebdaylemold ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴𝑋 ∈ ( O ‘𝐴)))
Distinct variable groups:   𝐴,𝑏   𝑦,𝑏,𝑋
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem madebdaylemold
StepHypRef Expression
1 fveq2 6891 . . . . . . . . 9 (𝑦 = 𝑋 → ( bday 𝑦) = ( bday 𝑋))
21sseq1d 4013 . . . . . . . 8 (𝑦 = 𝑋 → (( bday 𝑦) ⊆ 𝑏 ↔ ( bday 𝑋) ⊆ 𝑏))
3 eleq1 2820 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 ∈ ( M ‘𝑏) ↔ 𝑋 ∈ ( M ‘𝑏)))
42, 3imbi12d 344 . . . . . . 7 (𝑦 = 𝑋 → ((( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ↔ (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏))))
54rspcv 3608 . . . . . 6 (𝑋 No → (∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) → (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏))))
65ralimdv 3168 . . . . 5 (𝑋 No → (∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) → ∀𝑏𝐴 (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏))))
76impcom 407 . . . 4 ((∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → ∀𝑏𝐴 (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏)))
8 rexim 3086 . . . 4 (∀𝑏𝐴 (( bday 𝑋) ⊆ 𝑏𝑋 ∈ ( M ‘𝑏)) → (∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏 → ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
97, 8syl 17 . . 3 ((∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏 → ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
1093adant1 1129 . 2 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏 → ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
11 bdayelon 27515 . . . 4 ( bday 𝑋) ∈ On
12 onelssex 6412 . . . 4 ((( bday 𝑋) ∈ On ∧ 𝐴 ∈ On) → (( bday 𝑋) ∈ 𝐴 ↔ ∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏))
1311, 12mpan 687 . . 3 (𝐴 ∈ On → (( bday 𝑋) ∈ 𝐴 ↔ ∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏))
14133ad2ant1 1132 . 2 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴 ↔ ∃𝑏𝐴 ( bday 𝑋) ⊆ 𝑏))
15 elold 27602 . . 3 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
16153ad2ant1 1132 . 2 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
1710, 14, 163imtr4d 294 1 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴𝑋 ∈ ( O ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wrex 3069  wss 3948  Oncon0 6364  cfv 6543   No csur 27380   bday cbday 27382   M cmade 27575   O cold 27576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-1o 8470  df-2o 8471  df-no 27383  df-slt 27384  df-bday 27385  df-sslt 27520  df-scut 27522  df-made 27580  df-old 27581
This theorem is referenced by:  madebdaylemlrcut  27631  oldbday  27633
  Copyright terms: Public domain W3C validator