![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chfnrn | Structured version Visualization version GIF version |
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
chfnrn | ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → ran 𝐹 ⊆ ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrnb 6982 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
2 | 1 | biimpd 229 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
3 | eleq1 2832 | . . . . . . 7 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | |
4 | 3 | biimpcd 249 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ 𝑥 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝑥)) |
5 | 4 | ralimi 3089 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥 → ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝑥)) |
6 | rexim 3093 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝑥) → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
8 | 2, 7 | sylan9 507 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
9 | eluni2 4935 | . . 3 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
10 | 8, 9 | imbitrrdi 252 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ ∪ 𝐴)) |
11 | 10 | ssrdv 4014 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → ran 𝐹 ⊆ ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∪ cuni 4931 ran crn 5701 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: stoweidlem59 45980 |
Copyright terms: Public domain | W3C validator |