![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chfnrn | Structured version Visualization version GIF version |
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
chfnrn | ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → ran 𝐹 ⊆ ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrnb 6904 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
2 | 1 | biimpd 228 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
3 | eleq1 2822 | . . . . . . 7 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | |
4 | 3 | biimpcd 249 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ 𝑥 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝑥)) |
5 | 4 | ralimi 3083 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥 → ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝑥)) |
6 | rexim 3087 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝑥) → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
8 | 2, 7 | sylan9 509 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
9 | eluni2 4870 | . . 3 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
10 | 8, 9 | syl6ibr 252 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ ∪ 𝐴)) |
11 | 10 | ssrdv 3951 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → ran 𝐹 ⊆ ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ⊆ wss 3911 ∪ cuni 4866 ran crn 5635 Fn wfn 6492 ‘cfv 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fn 6500 df-fv 6505 |
This theorem is referenced by: stoweidlem59 44386 |
Copyright terms: Public domain | W3C validator |