MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfnrn Structured version   Visualization version   GIF version

Theorem chfnrn 7024
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
chfnrn ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → ran 𝐹 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem chfnrn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 6924 . . . . 5 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
21biimpd 229 . . . 4 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
3 eleq1 2817 . . . . . . 7 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝑥𝑦𝑥))
43biimpcd 249 . . . . . 6 ((𝐹𝑥) ∈ 𝑥 → ((𝐹𝑥) = 𝑦𝑦𝑥))
54ralimi 3067 . . . . 5 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥 → ∀𝑥𝐴 ((𝐹𝑥) = 𝑦𝑦𝑥))
6 rexim 3071 . . . . 5 (∀𝑥𝐴 ((𝐹𝑥) = 𝑦𝑦𝑥) → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 𝑦𝑥))
75, 6syl 17 . . . 4 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥 → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 𝑦𝑥))
82, 7sylan9 507 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 𝑦𝑥))
9 eluni2 4878 . . 3 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
108, 9imbitrrdi 252 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹𝑦 𝐴))
1110ssrdv 3955 1 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → ran 𝐹 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   cuni 4874  ran crn 5642   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  stoweidlem59  46064
  Copyright terms: Public domain W3C validator