MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfnrn Structured version   Visualization version   GIF version

Theorem chfnrn 7003
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
chfnrn ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → ran 𝐹 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem chfnrn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 6903 . . . . 5 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
21biimpd 229 . . . 4 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
3 eleq1 2816 . . . . . . 7 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝑥𝑦𝑥))
43biimpcd 249 . . . . . 6 ((𝐹𝑥) ∈ 𝑥 → ((𝐹𝑥) = 𝑦𝑦𝑥))
54ralimi 3066 . . . . 5 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥 → ∀𝑥𝐴 ((𝐹𝑥) = 𝑦𝑦𝑥))
6 rexim 3070 . . . . 5 (∀𝑥𝐴 ((𝐹𝑥) = 𝑦𝑦𝑥) → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 𝑦𝑥))
75, 6syl 17 . . . 4 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥 → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 𝑦𝑥))
82, 7sylan9 507 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 𝑦𝑥))
9 eluni2 4871 . . 3 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
108, 9imbitrrdi 252 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹𝑦 𝐴))
1110ssrdv 3949 1 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → ran 𝐹 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911   cuni 4867  ran crn 5632   Fn wfn 6494  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507
This theorem is referenced by:  stoweidlem59  46030
  Copyright terms: Public domain W3C validator