Step | Hyp | Ref
| Expression |
1 | | ptcmp.1 |
. . 3
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
2 | | ptcmp.2 |
. . 3
⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) |
3 | | ptcmp.3 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
4 | | ptcmp.4 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶Comp) |
5 | | ptcmp.5 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom
card)) |
6 | | ptcmplem2.5 |
. . 3
⊢ (𝜑 → 𝑈 ⊆ ran 𝑆) |
7 | | ptcmplem2.6 |
. . 3
⊢ (𝜑 → 𝑋 = ∪ 𝑈) |
8 | | ptcmplem2.7 |
. . 3
⊢ (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) |
9 | | ptcmplem3.8 |
. . 3
⊢ 𝐾 = {𝑢 ∈ (𝐹‘𝑘) ∣ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑈} |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ptcmplem3 23113 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) |
11 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → 𝑓 Fn 𝐴) |
12 | | eldifi 4057 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) → (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
13 | 12 | ralimi 3086 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) → ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
14 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝑓‘𝑛) = (𝑓‘𝑘)) |
15 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
16 | 15 | unieqd 4850 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑘)) |
17 | 14, 16 | eleq12d 2833 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → ((𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛) ↔ (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
18 | 17 | cbvralvw 3372 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛) ↔ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
19 | 13, 18 | sylibr 233 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) → ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛)) |
20 | 19 | ad2antll 725 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛)) |
21 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
22 | 21 | elixp 8650 |
. . . . . . . . 9
⊢ (𝑓 ∈ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛))) |
23 | 11, 20, 22 | sylanbrc 582 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → 𝑓 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛)) |
24 | 23, 2 | eleqtrrdi 2850 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → 𝑓 ∈ 𝑋) |
25 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → 𝑋 = ∪ 𝑈) |
26 | 24, 25 | eleqtrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → 𝑓 ∈ ∪ 𝑈) |
27 | | eluni2 4840 |
. . . . . 6
⊢ (𝑓 ∈ ∪ 𝑈
↔ ∃𝑣 ∈
𝑈 𝑓 ∈ 𝑣) |
28 | 26, 27 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → ∃𝑣 ∈ 𝑈 𝑓 ∈ 𝑣) |
29 | | simplrr 774 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → 𝑓 ∈ 𝑣) |
30 | 29 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑢 ∈ (𝐹‘𝑘) ∧ 𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) → 𝑓 ∈ 𝑣) |
31 | | simprr 769 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑢 ∈ (𝐹‘𝑘) ∧ 𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) → 𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
32 | 30, 31 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑢 ∈ (𝐹‘𝑘) ∧ 𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) → 𝑓 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
33 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑓 → (𝑤‘𝑘) = (𝑓‘𝑘)) |
34 | 33 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑓 → ((𝑤‘𝑘) ∈ 𝑢 ↔ (𝑓‘𝑘) ∈ 𝑢)) |
35 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) = (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) |
36 | 35 | mptpreima 6130 |
. . . . . . . . . . . . . . . . 17
⊢ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) = {𝑤 ∈ 𝑋 ∣ (𝑤‘𝑘) ∈ 𝑢} |
37 | 34, 36 | elrab2 3620 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ↔ (𝑓 ∈ 𝑋 ∧ (𝑓‘𝑘) ∈ 𝑢)) |
38 | 37 | simprbi 496 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) → (𝑓‘𝑘) ∈ 𝑢) |
39 | 32, 38 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑢 ∈ (𝐹‘𝑘) ∧ 𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) → (𝑓‘𝑘) ∈ 𝑢) |
40 | | simprl 767 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑢 ∈ (𝐹‘𝑘) ∧ 𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) → 𝑢 ∈ (𝐹‘𝑘)) |
41 | | simplrl 773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → 𝑣 ∈ 𝑈) |
42 | 41 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑢 ∈ (𝐹‘𝑘) ∧ 𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) → 𝑣 ∈ 𝑈) |
43 | 31, 42 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑢 ∈ (𝐹‘𝑘) ∧ 𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑈) |
44 | | rabid 3304 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ {𝑢 ∈ (𝐹‘𝑘) ∣ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑈} ↔ (𝑢 ∈ (𝐹‘𝑘) ∧ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑈)) |
45 | 40, 43, 44 | sylanbrc 582 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑢 ∈ (𝐹‘𝑘) ∧ 𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) → 𝑢 ∈ {𝑢 ∈ (𝐹‘𝑘) ∣ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑈}) |
46 | 45, 9 | eleqtrrdi 2850 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑢 ∈ (𝐹‘𝑘) ∧ 𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) → 𝑢 ∈ 𝐾) |
47 | | elunii 4841 |
. . . . . . . . . . . . . 14
⊢ (((𝑓‘𝑘) ∈ 𝑢 ∧ 𝑢 ∈ 𝐾) → (𝑓‘𝑘) ∈ ∪ 𝐾) |
48 | 39, 46, 47 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑢 ∈ (𝐹‘𝑘) ∧ 𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) → (𝑓‘𝑘) ∈ ∪ 𝐾) |
49 | 48 | rexlimdvaa 3213 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ (𝑘 ∈ 𝐴 ∧ (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → (∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) → (𝑓‘𝑘) ∈ ∪ 𝐾)) |
50 | 49 | expr 456 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) ∧ 𝑘 ∈ 𝐴) → ((𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) → (∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) → (𝑓‘𝑘) ∈ ∪ 𝐾))) |
51 | 50 | ralimdva 3102 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 Fn 𝐴) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) → (∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) → ∀𝑘 ∈ 𝐴 (∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) → (𝑓‘𝑘) ∈ ∪ 𝐾))) |
52 | 51 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 Fn 𝐴) → ((𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣) → (∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) → ∀𝑘 ∈ 𝐴 (∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) → (𝑓‘𝑘) ∈ ∪ 𝐾)))) |
53 | 52 | com23 86 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 Fn 𝐴) → (∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) → ((𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣) → ∀𝑘 ∈ 𝐴 (∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) → (𝑓‘𝑘) ∈ ∪ 𝐾)))) |
54 | 53 | impr 454 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → ((𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣) → ∀𝑘 ∈ 𝐴 (∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) → (𝑓‘𝑘) ∈ ∪ 𝐾))) |
55 | 54 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) → ∀𝑘 ∈ 𝐴 (∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) → (𝑓‘𝑘) ∈ ∪ 𝐾)) |
56 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → 𝑈 ⊆ ran 𝑆) |
57 | 56 | sselda 3917 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ ran 𝑆) |
58 | 57 | adantrr 713 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) → 𝑣 ∈ ran 𝑆) |
59 | 1 | rnmpo 7385 |
. . . . . . . 8
⊢ ran 𝑆 = {𝑣 ∣ ∃𝑘 ∈ 𝐴 ∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)} |
60 | 58, 59 | eleqtrdi 2849 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) → 𝑣 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐴 ∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)}) |
61 | | abid 2719 |
. . . . . . 7
⊢ (𝑣 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐴 ∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)} ↔ ∃𝑘 ∈ 𝐴 ∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
62 | 60, 61 | sylib 217 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) → ∃𝑘 ∈ 𝐴 ∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
63 | | rexim 3168 |
. . . . . 6
⊢
(∀𝑘 ∈
𝐴 (∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) → (𝑓‘𝑘) ∈ ∪ 𝐾) → (∃𝑘 ∈ 𝐴 ∃𝑢 ∈ (𝐹‘𝑘)𝑣 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) → ∃𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ 𝐾)) |
64 | 55, 62, 63 | sylc 65 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) ∧ (𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣)) → ∃𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ 𝐾) |
65 | 28, 64 | rexlimddv 3219 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → ∃𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ 𝐾) |
66 | | eldifn 4058 |
. . . . . . 7
⊢ ((𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) → ¬ (𝑓‘𝑘) ∈ ∪ 𝐾) |
67 | 66 | ralimi 3086 |
. . . . . 6
⊢
(∀𝑘 ∈
𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) → ∀𝑘 ∈ 𝐴 ¬ (𝑓‘𝑘) ∈ ∪ 𝐾) |
68 | 67 | ad2antll 725 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → ∀𝑘 ∈ 𝐴 ¬ (𝑓‘𝑘) ∈ ∪ 𝐾) |
69 | | ralnex 3163 |
. . . . 5
⊢
(∀𝑘 ∈
𝐴 ¬ (𝑓‘𝑘) ∈ ∪ 𝐾 ↔ ¬ ∃𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ 𝐾) |
70 | 68, 69 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → ¬ ∃𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ 𝐾) |
71 | 65, 70 | pm2.65da 813 |
. . 3
⊢ (𝜑 → ¬ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) |
72 | 71 | nexdv 1940 |
. 2
⊢ (𝜑 → ¬ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) |
73 | 10, 72 | pm2.65i 193 |
1
⊢ ¬
𝜑 |