MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem4 Structured version   Visualization version   GIF version

Theorem ptcmplem4 24028
Description: Lemma for ptcmp 24031. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
ptcmplem2.5 (𝜑𝑈 ⊆ ran 𝑆)
ptcmplem2.6 (𝜑𝑋 = 𝑈)
ptcmplem2.7 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
ptcmplem3.8 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
Assertion
Ref Expression
ptcmplem4 ¬ 𝜑
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝑧,𝐴   𝑢,𝐾   𝑆,𝑘,𝑛,𝑢,𝑧   𝜑,𝑘,𝑛,𝑢   𝑈,𝑘,𝑢,𝑧   𝑘,𝑉,𝑛,𝑢,𝑤,𝑧   𝑘,𝐹,𝑛,𝑢,𝑤,𝑧   𝑘,𝑋,𝑛,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑆(𝑤)   𝑈(𝑤,𝑛)   𝐾(𝑧,𝑤,𝑘,𝑛)

Proof of Theorem ptcmplem4
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.1 . . 3 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
2 ptcmp.2 . . 3 𝑋 = X𝑛𝐴 (𝐹𝑛)
3 ptcmp.3 . . 3 (𝜑𝐴𝑉)
4 ptcmp.4 . . 3 (𝜑𝐹:𝐴⟶Comp)
5 ptcmp.5 . . 3 (𝜑𝑋 ∈ (UFL ∩ dom card))
6 ptcmplem2.5 . . 3 (𝜑𝑈 ⊆ ran 𝑆)
7 ptcmplem2.6 . . 3 (𝜑𝑋 = 𝑈)
8 ptcmplem2.7 . . 3 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
9 ptcmplem3.8 . . 3 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
101, 2, 3, 4, 5, 6, 7, 8, 9ptcmplem3 24027 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
11 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓 Fn 𝐴)
12 eldifi 4113 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → (𝑓𝑘) ∈ (𝐹𝑘))
1312ralimi 3072 . . . . . . . . . . 11 (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
14 fveq2 6887 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
15 fveq2 6887 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
1615unieqd 4902 . . . . . . . . . . . . 13 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
1714, 16eleq12d 2827 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑓𝑛) ∈ (𝐹𝑛) ↔ (𝑓𝑘) ∈ (𝐹𝑘)))
1817cbvralvw 3224 . . . . . . . . . . 11 (∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛) ↔ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
1913, 18sylibr 234 . . . . . . . . . 10 (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
2019ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
21 vex 3468 . . . . . . . . . 10 𝑓 ∈ V
2221elixp 8927 . . . . . . . . 9 (𝑓X𝑛𝐴 (𝐹𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛)))
2311, 20, 22sylanbrc 583 . . . . . . . 8 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓X𝑛𝐴 (𝐹𝑛))
2423, 2eleqtrrdi 2844 . . . . . . 7 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓𝑋)
257adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑋 = 𝑈)
2624, 25eleqtrd 2835 . . . . . 6 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓 𝑈)
27 eluni2 4893 . . . . . 6 (𝑓 𝑈 ↔ ∃𝑣𝑈 𝑓𝑣)
2826, 27sylib 218 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∃𝑣𝑈 𝑓𝑣)
29 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓𝑣)
3029adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑓𝑣)
31 simprr 772 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
3230, 31eleqtrd 2835 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
33 fveq1 6886 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑓 → (𝑤𝑘) = (𝑓𝑘))
3433eleq1d 2818 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑓 → ((𝑤𝑘) ∈ 𝑢 ↔ (𝑓𝑘) ∈ 𝑢))
35 eqid 2734 . . . . . . . . . . . . . . . . . 18 (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘))
3635mptpreima 6240 . . . . . . . . . . . . . . . . 17 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝑋 ∣ (𝑤𝑘) ∈ 𝑢}
3734, 36elrab2 3679 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓𝑋 ∧ (𝑓𝑘) ∈ 𝑢))
3837simprbi 496 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝑢)
3932, 38syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → (𝑓𝑘) ∈ 𝑢)
40 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑢 ∈ (𝐹𝑘))
41 simplrl 776 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑣𝑈)
4241adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑣𝑈)
4331, 42eqeltrrd 2834 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈)
44 rabid 3442 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈} ↔ (𝑢 ∈ (𝐹𝑘) ∧ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈))
4540, 43, 44sylanbrc 583 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑢 ∈ {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈})
4645, 9eleqtrrdi 2844 . . . . . . . . . . . . . 14 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑢𝐾)
47 elunii 4894 . . . . . . . . . . . . . 14 (((𝑓𝑘) ∈ 𝑢𝑢𝐾) → (𝑓𝑘) ∈ 𝐾)
4839, 46, 47syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → (𝑓𝑘) ∈ 𝐾)
4948rexlimdvaa 3143 . . . . . . . . . . . 12 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))
5049expr 456 . . . . . . . . . . 11 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ 𝑘𝐴) → ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾)))
5150ralimdva 3154 . . . . . . . . . 10 (((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾)))
5251ex 412 . . . . . . . . 9 ((𝜑𝑓 Fn 𝐴) → ((𝑣𝑈𝑓𝑣) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))))
5352com23 86 . . . . . . . 8 ((𝜑𝑓 Fn 𝐴) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ((𝑣𝑈𝑓𝑣) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))))
5453impr 454 . . . . . . 7 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ((𝑣𝑈𝑓𝑣) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾)))
5554imp 406 . . . . . 6 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))
566adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑈 ⊆ ran 𝑆)
5756sselda 3965 . . . . . . . . 9 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ 𝑣𝑈) → 𝑣 ∈ ran 𝑆)
5857adantrr 717 . . . . . . . 8 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → 𝑣 ∈ ran 𝑆)
591rnmpo 7549 . . . . . . . 8 ran 𝑆 = {𝑣 ∣ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)}
6058, 59eleqtrdi 2843 . . . . . . 7 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → 𝑣 ∈ {𝑣 ∣ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)})
61 abid 2716 . . . . . . 7 (𝑣 ∈ {𝑣 ∣ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)} ↔ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
6260, 61sylib 218 . . . . . 6 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
63 rexim 3076 . . . . . 6 (∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾) → (∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾))
6455, 62, 63sylc 65 . . . . 5 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
6528, 64rexlimddv 3148 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
66 eldifn 4114 . . . . . . 7 ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ¬ (𝑓𝑘) ∈ 𝐾)
6766ralimi 3072 . . . . . 6 (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 ¬ (𝑓𝑘) ∈ 𝐾)
6867ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∀𝑘𝐴 ¬ (𝑓𝑘) ∈ 𝐾)
69 ralnex 3061 . . . . 5 (∀𝑘𝐴 ¬ (𝑓𝑘) ∈ 𝐾 ↔ ¬ ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
7068, 69sylib 218 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ¬ ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
7165, 70pm2.65da 816 . . 3 (𝜑 → ¬ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
7271nexdv 1935 . 2 (𝜑 → ¬ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
7310, 72pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  {cab 2712  wral 3050  wrex 3059  {crab 3420  cdif 3930  cin 3932  wss 3933  𝒫 cpw 4582   cuni 4889  cmpt 5207  ccnv 5666  dom cdm 5667  ran crn 5668  cima 5670   Fn wfn 6537  wf 6538  cfv 6542  cmpo 7416  Xcixp 8920  Fincfn 8968  cardccrd 9958  Compccmp 23359  UFLcufl 23873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-oadd 8493  df-omul 8494  df-er 8728  df-map 8851  df-ixp 8921  df-en 8969  df-dom 8970  df-fin 8972  df-wdom 9588  df-card 9962  df-acn 9965  df-cmp 23360
This theorem is referenced by:  ptcmplem5  24029
  Copyright terms: Public domain W3C validator