MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem4 Structured version   Visualization version   GIF version

Theorem ptcmplem4 23422
Description: Lemma for ptcmp 23425. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
ptcmplem2.5 (𝜑𝑈 ⊆ ran 𝑆)
ptcmplem2.6 (𝜑𝑋 = 𝑈)
ptcmplem2.7 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
ptcmplem3.8 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
Assertion
Ref Expression
ptcmplem4 ¬ 𝜑
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝑧,𝐴   𝑢,𝐾   𝑆,𝑘,𝑛,𝑢,𝑧   𝜑,𝑘,𝑛,𝑢   𝑈,𝑘,𝑢,𝑧   𝑘,𝑉,𝑛,𝑢,𝑤,𝑧   𝑘,𝐹,𝑛,𝑢,𝑤,𝑧   𝑘,𝑋,𝑛,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑆(𝑤)   𝑈(𝑤,𝑛)   𝐾(𝑧,𝑤,𝑘,𝑛)

Proof of Theorem ptcmplem4
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.1 . . 3 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
2 ptcmp.2 . . 3 𝑋 = X𝑛𝐴 (𝐹𝑛)
3 ptcmp.3 . . 3 (𝜑𝐴𝑉)
4 ptcmp.4 . . 3 (𝜑𝐹:𝐴⟶Comp)
5 ptcmp.5 . . 3 (𝜑𝑋 ∈ (UFL ∩ dom card))
6 ptcmplem2.5 . . 3 (𝜑𝑈 ⊆ ran 𝑆)
7 ptcmplem2.6 . . 3 (𝜑𝑋 = 𝑈)
8 ptcmplem2.7 . . 3 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
9 ptcmplem3.8 . . 3 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
101, 2, 3, 4, 5, 6, 7, 8, 9ptcmplem3 23421 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
11 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓 Fn 𝐴)
12 eldifi 4091 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → (𝑓𝑘) ∈ (𝐹𝑘))
1312ralimi 3087 . . . . . . . . . . 11 (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
14 fveq2 6847 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
15 fveq2 6847 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
1615unieqd 4884 . . . . . . . . . . . . 13 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
1714, 16eleq12d 2832 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑓𝑛) ∈ (𝐹𝑛) ↔ (𝑓𝑘) ∈ (𝐹𝑘)))
1817cbvralvw 3228 . . . . . . . . . . 11 (∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛) ↔ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
1913, 18sylibr 233 . . . . . . . . . 10 (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
2019ad2antll 728 . . . . . . . . 9 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
21 vex 3452 . . . . . . . . . 10 𝑓 ∈ V
2221elixp 8849 . . . . . . . . 9 (𝑓X𝑛𝐴 (𝐹𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛)))
2311, 20, 22sylanbrc 584 . . . . . . . 8 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓X𝑛𝐴 (𝐹𝑛))
2423, 2eleqtrrdi 2849 . . . . . . 7 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓𝑋)
257adantr 482 . . . . . . 7 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑋 = 𝑈)
2624, 25eleqtrd 2840 . . . . . 6 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓 𝑈)
27 eluni2 4874 . . . . . 6 (𝑓 𝑈 ↔ ∃𝑣𝑈 𝑓𝑣)
2826, 27sylib 217 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∃𝑣𝑈 𝑓𝑣)
29 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓𝑣)
3029adantr 482 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑓𝑣)
31 simprr 772 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
3230, 31eleqtrd 2840 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
33 fveq1 6846 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑓 → (𝑤𝑘) = (𝑓𝑘))
3433eleq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑓 → ((𝑤𝑘) ∈ 𝑢 ↔ (𝑓𝑘) ∈ 𝑢))
35 eqid 2737 . . . . . . . . . . . . . . . . . 18 (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘))
3635mptpreima 6195 . . . . . . . . . . . . . . . . 17 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝑋 ∣ (𝑤𝑘) ∈ 𝑢}
3734, 36elrab2 3653 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓𝑋 ∧ (𝑓𝑘) ∈ 𝑢))
3837simprbi 498 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝑢)
3932, 38syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → (𝑓𝑘) ∈ 𝑢)
40 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑢 ∈ (𝐹𝑘))
41 simplrl 776 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑣𝑈)
4241adantr 482 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑣𝑈)
4331, 42eqeltrrd 2839 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈)
44 rabid 3430 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈} ↔ (𝑢 ∈ (𝐹𝑘) ∧ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈))
4540, 43, 44sylanbrc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑢 ∈ {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈})
4645, 9eleqtrrdi 2849 . . . . . . . . . . . . . 14 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑢𝐾)
47 elunii 4875 . . . . . . . . . . . . . 14 (((𝑓𝑘) ∈ 𝑢𝑢𝐾) → (𝑓𝑘) ∈ 𝐾)
4839, 46, 47syl2anc 585 . . . . . . . . . . . . 13 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → (𝑓𝑘) ∈ 𝐾)
4948rexlimdvaa 3154 . . . . . . . . . . . 12 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))
5049expr 458 . . . . . . . . . . 11 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ 𝑘𝐴) → ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾)))
5150ralimdva 3165 . . . . . . . . . 10 (((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾)))
5251ex 414 . . . . . . . . 9 ((𝜑𝑓 Fn 𝐴) → ((𝑣𝑈𝑓𝑣) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))))
5352com23 86 . . . . . . . 8 ((𝜑𝑓 Fn 𝐴) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ((𝑣𝑈𝑓𝑣) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))))
5453impr 456 . . . . . . 7 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ((𝑣𝑈𝑓𝑣) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾)))
5554imp 408 . . . . . 6 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))
566adantr 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑈 ⊆ ran 𝑆)
5756sselda 3949 . . . . . . . . 9 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ 𝑣𝑈) → 𝑣 ∈ ran 𝑆)
5857adantrr 716 . . . . . . . 8 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → 𝑣 ∈ ran 𝑆)
591rnmpo 7494 . . . . . . . 8 ran 𝑆 = {𝑣 ∣ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)}
6058, 59eleqtrdi 2848 . . . . . . 7 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → 𝑣 ∈ {𝑣 ∣ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)})
61 abid 2718 . . . . . . 7 (𝑣 ∈ {𝑣 ∣ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)} ↔ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
6260, 61sylib 217 . . . . . 6 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
63 rexim 3091 . . . . . 6 (∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾) → (∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾))
6455, 62, 63sylc 65 . . . . 5 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
6528, 64rexlimddv 3159 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
66 eldifn 4092 . . . . . . 7 ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ¬ (𝑓𝑘) ∈ 𝐾)
6766ralimi 3087 . . . . . 6 (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 ¬ (𝑓𝑘) ∈ 𝐾)
6867ad2antll 728 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∀𝑘𝐴 ¬ (𝑓𝑘) ∈ 𝐾)
69 ralnex 3076 . . . . 5 (∀𝑘𝐴 ¬ (𝑓𝑘) ∈ 𝐾 ↔ ¬ ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
7068, 69sylib 217 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ¬ ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
7165, 70pm2.65da 816 . . 3 (𝜑 → ¬ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
7271nexdv 1940 . 2 (𝜑 → ¬ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
7310, 72pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  {cab 2714  wral 3065  wrex 3074  {crab 3410  cdif 3912  cin 3914  wss 3915  𝒫 cpw 4565   cuni 4870  cmpt 5193  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641   Fn wfn 6496  wf 6497  cfv 6501  cmpo 7364  Xcixp 8842  Fincfn 8890  cardccrd 9878  Compccmp 22753  UFLcufl 23267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-omul 8422  df-er 8655  df-map 8774  df-ixp 8843  df-en 8891  df-dom 8892  df-fin 8894  df-wdom 9508  df-card 9882  df-acn 9885  df-cmp 22754
This theorem is referenced by:  ptcmplem5  23423
  Copyright terms: Public domain W3C validator