MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem4 Structured version   Visualization version   GIF version

Theorem ptcmplem4 22924
Description: Lemma for ptcmp 22927. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
ptcmplem2.5 (𝜑𝑈 ⊆ ran 𝑆)
ptcmplem2.6 (𝜑𝑋 = 𝑈)
ptcmplem2.7 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
ptcmplem3.8 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
Assertion
Ref Expression
ptcmplem4 ¬ 𝜑
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝑧,𝐴   𝑢,𝐾   𝑆,𝑘,𝑛,𝑢,𝑧   𝜑,𝑘,𝑛,𝑢   𝑈,𝑘,𝑢,𝑧   𝑘,𝑉,𝑛,𝑢,𝑤,𝑧   𝑘,𝐹,𝑛,𝑢,𝑤,𝑧   𝑘,𝑋,𝑛,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑆(𝑤)   𝑈(𝑤,𝑛)   𝐾(𝑧,𝑤,𝑘,𝑛)

Proof of Theorem ptcmplem4
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.1 . . 3 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
2 ptcmp.2 . . 3 𝑋 = X𝑛𝐴 (𝐹𝑛)
3 ptcmp.3 . . 3 (𝜑𝐴𝑉)
4 ptcmp.4 . . 3 (𝜑𝐹:𝐴⟶Comp)
5 ptcmp.5 . . 3 (𝜑𝑋 ∈ (UFL ∩ dom card))
6 ptcmplem2.5 . . 3 (𝜑𝑈 ⊆ ran 𝑆)
7 ptcmplem2.6 . . 3 (𝜑𝑋 = 𝑈)
8 ptcmplem2.7 . . 3 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
9 ptcmplem3.8 . . 3 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
101, 2, 3, 4, 5, 6, 7, 8, 9ptcmplem3 22923 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
11 simprl 771 . . . . . . . . 9 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓 Fn 𝐴)
12 eldifi 4031 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → (𝑓𝑘) ∈ (𝐹𝑘))
1312ralimi 3076 . . . . . . . . . . 11 (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
14 fveq2 6706 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
15 fveq2 6706 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
1615unieqd 4823 . . . . . . . . . . . . 13 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
1714, 16eleq12d 2828 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑓𝑛) ∈ (𝐹𝑛) ↔ (𝑓𝑘) ∈ (𝐹𝑘)))
1817cbvralvw 3351 . . . . . . . . . . 11 (∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛) ↔ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
1913, 18sylibr 237 . . . . . . . . . 10 (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
2019ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
21 vex 3405 . . . . . . . . . 10 𝑓 ∈ V
2221elixp 8574 . . . . . . . . 9 (𝑓X𝑛𝐴 (𝐹𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛)))
2311, 20, 22sylanbrc 586 . . . . . . . 8 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓X𝑛𝐴 (𝐹𝑛))
2423, 2eleqtrrdi 2845 . . . . . . 7 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓𝑋)
257adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑋 = 𝑈)
2624, 25eleqtrd 2836 . . . . . 6 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓 𝑈)
27 eluni2 4813 . . . . . 6 (𝑓 𝑈 ↔ ∃𝑣𝑈 𝑓𝑣)
2826, 27sylib 221 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∃𝑣𝑈 𝑓𝑣)
29 simplrr 778 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑓𝑣)
3029adantr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑓𝑣)
31 simprr 773 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
3230, 31eleqtrd 2836 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
33 fveq1 6705 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑓 → (𝑤𝑘) = (𝑓𝑘))
3433eleq1d 2818 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑓 → ((𝑤𝑘) ∈ 𝑢 ↔ (𝑓𝑘) ∈ 𝑢))
35 eqid 2734 . . . . . . . . . . . . . . . . . 18 (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘))
3635mptpreima 6090 . . . . . . . . . . . . . . . . 17 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝑋 ∣ (𝑤𝑘) ∈ 𝑢}
3734, 36elrab2 3598 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓𝑋 ∧ (𝑓𝑘) ∈ 𝑢))
3837simprbi 500 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝑢)
3932, 38syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → (𝑓𝑘) ∈ 𝑢)
40 simprl 771 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑢 ∈ (𝐹𝑘))
41 simplrl 777 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑣𝑈)
4241adantr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑣𝑈)
4331, 42eqeltrrd 2835 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈)
44 rabid 3283 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈} ↔ (𝑢 ∈ (𝐹𝑘) ∧ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈))
4540, 43, 44sylanbrc 586 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑢 ∈ {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈})
4645, 9eleqtrrdi 2845 . . . . . . . . . . . . . 14 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑢𝐾)
47 elunii 4814 . . . . . . . . . . . . . 14 (((𝑓𝑘) ∈ 𝑢𝑢𝐾) → (𝑓𝑘) ∈ 𝐾)
4839, 46, 47syl2anc 587 . . . . . . . . . . . . 13 (((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑢 ∈ (𝐹𝑘) ∧ 𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → (𝑓𝑘) ∈ 𝐾)
4948rexlimdvaa 3197 . . . . . . . . . . . 12 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ (𝑘𝐴 ∧ (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))
5049expr 460 . . . . . . . . . . 11 ((((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) ∧ 𝑘𝐴) → ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾)))
5150ralimdva 3093 . . . . . . . . . 10 (((𝜑𝑓 Fn 𝐴) ∧ (𝑣𝑈𝑓𝑣)) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾)))
5251ex 416 . . . . . . . . 9 ((𝜑𝑓 Fn 𝐴) → ((𝑣𝑈𝑓𝑣) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))))
5352com23 86 . . . . . . . 8 ((𝜑𝑓 Fn 𝐴) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ((𝑣𝑈𝑓𝑣) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))))
5453impr 458 . . . . . . 7 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ((𝑣𝑈𝑓𝑣) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾)))
5554imp 410 . . . . . 6 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → ∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾))
566adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝑈 ⊆ ran 𝑆)
5756sselda 3891 . . . . . . . . 9 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ 𝑣𝑈) → 𝑣 ∈ ran 𝑆)
5857adantrr 717 . . . . . . . 8 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → 𝑣 ∈ ran 𝑆)
591rnmpo 7332 . . . . . . . 8 ran 𝑆 = {𝑣 ∣ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)}
6058, 59eleqtrdi 2844 . . . . . . 7 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → 𝑣 ∈ {𝑣 ∣ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)})
61 abid 2716 . . . . . . 7 (𝑣 ∈ {𝑣 ∣ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)} ↔ ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
6260, 61sylib 221 . . . . . 6 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → ∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
63 rexim 3156 . . . . . 6 (∀𝑘𝐴 (∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → (𝑓𝑘) ∈ 𝐾) → (∃𝑘𝐴𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) → ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾))
6455, 62, 63sylc 65 . . . . 5 (((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) ∧ (𝑣𝑈𝑓𝑣)) → ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
6528, 64rexlimddv 3203 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
66 eldifn 4032 . . . . . . 7 ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ¬ (𝑓𝑘) ∈ 𝐾)
6766ralimi 3076 . . . . . 6 (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 ¬ (𝑓𝑘) ∈ 𝐾)
6867ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∀𝑘𝐴 ¬ (𝑓𝑘) ∈ 𝐾)
69 ralnex 3151 . . . . 5 (∀𝑘𝐴 ¬ (𝑓𝑘) ∈ 𝐾 ↔ ¬ ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
7068, 69sylib 221 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ¬ ∃𝑘𝐴 (𝑓𝑘) ∈ 𝐾)
7165, 70pm2.65da 817 . . 3 (𝜑 → ¬ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
7271nexdv 1944 . 2 (𝜑 → ¬ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
7310, 72pm2.65i 197 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  {cab 2712  wral 3054  wrex 3055  {crab 3058  cdif 3854  cin 3856  wss 3857  𝒫 cpw 4503   cuni 4809  cmpt 5124  ccnv 5539  dom cdm 5540  ran crn 5541  cima 5543   Fn wfn 6364  wf 6365  cfv 6369  cmpo 7204  Xcixp 8567  Fincfn 8615  cardccrd 9534  Compccmp 22255  UFLcufl 22769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-omul 8196  df-er 8380  df-map 8499  df-ixp 8568  df-en 8616  df-dom 8617  df-fin 8619  df-wdom 9170  df-card 9538  df-acn 9541  df-cmp 22256
This theorem is referenced by:  ptcmplem5  22925
  Copyright terms: Public domain W3C validator