| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotassuni | Structured version Visualization version GIF version | ||
| Description: The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotassuni | ⊢ (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotauni 7353 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 2 | ssrab2 4046 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 3 | 2 | unissi 4883 | . . . 4 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ ∪ 𝐴 |
| 4 | ssun2 4145 | . . . 4 ⊢ ∪ 𝐴 ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) | |
| 5 | 3, 4 | sstri 3959 | . . 3 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) |
| 6 | 1, 5 | eqsstrdi 3994 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴)) |
| 7 | riotaund 7386 | . . 3 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∅) | |
| 8 | 0ss 4366 | . . 3 ⊢ ∅ ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) | |
| 9 | 7, 8 | eqsstrdi 3994 | . 2 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴)) |
| 10 | 6, 9 | pm2.61i 182 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃!wreu 3354 {crab 3408 ∪ cun 3915 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 ∪ cuni 4874 ℩crio 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-uni 4875 df-iota 6467 df-riota 7347 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |