MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotassuni Structured version   Visualization version   GIF version

Theorem riotassuni 7273
Description: The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotassuni (𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotassuni
StepHypRef Expression
1 riotauni 7238 . . 3 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})
2 ssrab2 4013 . . . . 5 {𝑥𝐴𝜑} ⊆ 𝐴
32unissi 4848 . . . 4 {𝑥𝐴𝜑} ⊆ 𝐴
4 ssun2 4107 . . . 4 𝐴 ⊆ (𝒫 𝐴 𝐴)
53, 4sstri 3930 . . 3 {𝑥𝐴𝜑} ⊆ (𝒫 𝐴 𝐴)
61, 5eqsstrdi 3975 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴))
7 riotaund 7272 . . 3 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
8 0ss 4330 . . 3 ∅ ⊆ (𝒫 𝐴 𝐴)
97, 8eqsstrdi 3975 . 2 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴))
106, 9pm2.61i 182 1 (𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  ∃!wreu 3066  {crab 3068  cun 3885  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839  crio 7231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-uni 4840  df-iota 6391  df-riota 7232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator