Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotassuni | Structured version Visualization version GIF version |
Description: The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
riotassuni | ⊢ (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotauni 7218 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
2 | ssrab2 4009 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
3 | 2 | unissi 4845 | . . . 4 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ ∪ 𝐴 |
4 | ssun2 4103 | . . . 4 ⊢ ∪ 𝐴 ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) | |
5 | 3, 4 | sstri 3926 | . . 3 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) |
6 | 1, 5 | eqsstrdi 3971 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴)) |
7 | riotaund 7252 | . . 3 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∅) | |
8 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) | |
9 | 7, 8 | eqsstrdi 3971 | . 2 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴)) |
10 | 6, 9 | pm2.61i 182 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃!wreu 3065 {crab 3067 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ∪ cuni 4836 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-riota 7212 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |