Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotassuni | Structured version Visualization version GIF version |
Description: The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
riotassuni | ⊢ (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotauni 7238 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
2 | ssrab2 4013 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
3 | 2 | unissi 4848 | . . . 4 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ ∪ 𝐴 |
4 | ssun2 4107 | . . . 4 ⊢ ∪ 𝐴 ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) | |
5 | 3, 4 | sstri 3930 | . . 3 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) |
6 | 1, 5 | eqsstrdi 3975 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴)) |
7 | riotaund 7272 | . . 3 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∅) | |
8 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) | |
9 | 7, 8 | eqsstrdi 3975 | . 2 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴)) |
10 | 6, 9 | pm2.61i 182 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃!wreu 3066 {crab 3068 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 ℩crio 7231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-riota 7232 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |