| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotassuni | Structured version Visualization version GIF version | ||
| Description: The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotassuni | ⊢ (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotauni 7366 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 2 | ssrab2 4055 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 3 | 2 | unissi 4892 | . . . 4 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ ∪ 𝐴 |
| 4 | ssun2 4154 | . . . 4 ⊢ ∪ 𝐴 ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) | |
| 5 | 3, 4 | sstri 3968 | . . 3 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) |
| 6 | 1, 5 | eqsstrdi 4003 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴)) |
| 7 | riotaund 7399 | . . 3 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∅) | |
| 8 | 0ss 4375 | . . 3 ⊢ ∅ ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) | |
| 9 | 7, 8 | eqsstrdi 4003 | . 2 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴)) |
| 10 | 6, 9 | pm2.61i 182 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃!wreu 3357 {crab 3415 ∪ cun 3924 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 ∪ cuni 4883 ℩crio 7359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-uni 4884 df-iota 6483 df-riota 7360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |