MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotassuni Structured version   Visualization version   GIF version

Theorem riotassuni 7253
Description: The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotassuni (𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotassuni
StepHypRef Expression
1 riotauni 7218 . . 3 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})
2 ssrab2 4009 . . . . 5 {𝑥𝐴𝜑} ⊆ 𝐴
32unissi 4845 . . . 4 {𝑥𝐴𝜑} ⊆ 𝐴
4 ssun2 4103 . . . 4 𝐴 ⊆ (𝒫 𝐴 𝐴)
53, 4sstri 3926 . . 3 {𝑥𝐴𝜑} ⊆ (𝒫 𝐴 𝐴)
61, 5eqsstrdi 3971 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴))
7 riotaund 7252 . . 3 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
8 0ss 4327 . . 3 ∅ ⊆ (𝒫 𝐴 𝐴)
97, 8eqsstrdi 3971 . 2 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴))
106, 9pm2.61i 182 1 (𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  ∃!wreu 3065  {crab 3067  cun 3881  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836  crio 7211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376  df-riota 7212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator