MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnexd Structured version   Visualization version   GIF version

Theorem rnexd 7916
Description: The range of a set is a set. Deduction version of rnexd 7916. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypothesis
Ref Expression
rnexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
rnexd (𝜑 → ran 𝐴 ∈ V)

Proof of Theorem rnexd
StepHypRef Expression
1 rnexd.1 . 2 (𝜑𝐴𝑉)
2 rnexg 7903 . 2 (𝐴𝑉 → ran 𝐴 ∈ V)
31, 2syl 17 1 (𝜑 → ran 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3464  ran crn 5660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-cnv 5667  df-dm 5669  df-rn 5670
This theorem is referenced by:  qusrn  33429
  Copyright terms: Public domain W3C validator