MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnexd Structured version   Visualization version   GIF version

Theorem rnexd 7938
Description: The range of a set is a set. Deduction version of rnexd 7938. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypothesis
Ref Expression
rnexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
rnexd (𝜑 → ran 𝐴 ∈ V)

Proof of Theorem rnexd
StepHypRef Expression
1 rnexd.1 . 2 (𝜑𝐴𝑉)
2 rnexg 7925 . 2 (𝐴𝑉 → ran 𝐴 ∈ V)
31, 2syl 17 1 (𝜑 → ran 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3479  ran crn 5685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-cnv 5692  df-dm 5694  df-rn 5695
This theorem is referenced by:  qusrn  33438
  Copyright terms: Public domain W3C validator