MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnexd Structured version   Visualization version   GIF version

Theorem rnexd 7845
Description: The range of a set is a set. Deduction version of rnexd 7845. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypothesis
Ref Expression
rnexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
rnexd (𝜑 → ran 𝐴 ∈ V)

Proof of Theorem rnexd
StepHypRef Expression
1 rnexd.1 . 2 (𝜑𝐴𝑉)
2 rnexg 7832 . 2 (𝐴𝑉 → ran 𝐴 ∈ V)
31, 2syl 17 1 (𝜑 → ran 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  ran crn 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by:  qusrn  33374
  Copyright terms: Public domain W3C validator