MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnexd Structured version   Visualization version   GIF version

Theorem rnexd 7891
Description: The range of a set is a set. Deduction version of rnexd 7891. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypothesis
Ref Expression
rnexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
rnexd (𝜑 → ran 𝐴 ∈ V)

Proof of Theorem rnexd
StepHypRef Expression
1 rnexd.1 . 2 (𝜑𝐴𝑉)
2 rnexg 7878 . 2 (𝐴𝑉 → ran 𝐴 ∈ V)
31, 2syl 17 1 (𝜑 → ran 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3447  ran crn 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-cnv 5646  df-dm 5648  df-rn 5649
This theorem is referenced by:  qusrn  33380
  Copyright terms: Public domain W3C validator