MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaexd Structured version   Visualization version   GIF version

Theorem imaexd 7956
Description: The image of a set is a set. Deduction version of imaexg 7953. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypothesis
Ref Expression
rnexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
imaexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem imaexd
StepHypRef Expression
1 rnexd.1 . 2 (𝜑𝐴𝑉)
2 imaexg 7953 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  mptcnfimad  8027  ghmqusnsglem1  19320  ghmqusnsg  19322  ghmquskerlem1  19323  ghmquskerco  19324  ghmquskerlem3  19326  ghmqusker  19327  algextdeglem4  33711  aks6d1c2lem4  42084  aks6d1c2  42087  aks6d1c6lem2  42128  aks6d1c6lem3  42129  aks6d1c7lem1  42137  aks6d1c7lem2  42138  isuspgrim0lem  47755
  Copyright terms: Public domain W3C validator