| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaexd | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Deduction version of imaexg 7849. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| imaexd | ⊢ (𝜑 → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | imaexg 7849 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: mptcnfimad 7924 ghmqusnsglem1 19194 ghmqusnsg 19196 ghmquskerlem1 19197 ghmquskerco 19198 ghmquskerlem3 19200 ghmqusker 19201 gsumfs2d 33042 algextdeglem4 33754 aks6d1c2lem4 42241 aks6d1c2 42244 aks6d1c6lem2 42285 aks6d1c6lem3 42286 aks6d1c7lem1 42294 aks6d1c7lem2 42295 sge0f1o 46505 isuspgrim0lem 48018 isubgr3stgrlem5 48095 imasubclem1 49230 |
| Copyright terms: Public domain | W3C validator |