MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaexd Structured version   Visualization version   GIF version

Theorem imaexd 7920
Description: The image of a set is a set. Deduction version of imaexg 7917. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypothesis
Ref Expression
rnexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
imaexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem imaexd
StepHypRef Expression
1 rnexd.1 . 2 (𝜑𝐴𝑉)
2 imaexg 7917 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3463  cima 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-xp 5671  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678
This theorem is referenced by:  mptcnfimad  7993  ghmqusnsglem1  19268  ghmqusnsg  19270  ghmquskerlem1  19271  ghmquskerco  19272  ghmquskerlem3  19274  ghmqusker  19275  gsumfs2d  33002  algextdeglem4  33705  aks6d1c2lem4  42103  aks6d1c2  42106  aks6d1c6lem2  42147  aks6d1c6lem3  42148  aks6d1c7lem1  42156  aks6d1c7lem2  42157  sge0f1o  46369  isuspgrim0lem  47844  isubgr3stgrlem5  47910
  Copyright terms: Public domain W3C validator