MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaexd Structured version   Visualization version   GIF version

Theorem imaexd 7856
Description: The image of a set is a set. Deduction version of imaexg 7853. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypothesis
Ref Expression
rnexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
imaexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem imaexd
StepHypRef Expression
1 rnexd.1 . 2 (𝜑𝐴𝑉)
2 imaexg 7853 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3438  cima 5626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636
This theorem is referenced by:  mptcnfimad  7928  ghmqusnsglem1  19177  ghmqusnsg  19179  ghmquskerlem1  19180  ghmquskerco  19181  ghmquskerlem3  19183  ghmqusker  19184  gsumfs2d  33021  algextdeglem4  33689  aks6d1c2lem4  42103  aks6d1c2  42106  aks6d1c6lem2  42147  aks6d1c6lem3  42148  aks6d1c7lem1  42156  aks6d1c7lem2  42157  sge0f1o  46367  isuspgrim0lem  47881  isubgr3stgrlem5  47958  imasubclem1  49093
  Copyright terms: Public domain W3C validator