| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaexd | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Deduction version of imaexg 7889. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| imaexd | ⊢ (𝜑 → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | imaexg 7889 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: mptcnfimad 7965 ghmqusnsglem1 19212 ghmqusnsg 19214 ghmquskerlem1 19215 ghmquskerco 19216 ghmquskerlem3 19218 ghmqusker 19219 gsumfs2d 32995 algextdeglem4 33710 aks6d1c2lem4 42115 aks6d1c2 42118 aks6d1c6lem2 42159 aks6d1c6lem3 42160 aks6d1c7lem1 42168 aks6d1c7lem2 42169 sge0f1o 46380 isuspgrim0lem 47890 isubgr3stgrlem5 47966 imasubclem1 49090 |
| Copyright terms: Public domain | W3C validator |