| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaexd | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Deduction version of imaexg 7843. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| imaexd | ⊢ (𝜑 → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | imaexg 7843 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 “ cima 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: mptcnfimad 7918 ghmqusnsglem1 19193 ghmqusnsg 19195 ghmquskerlem1 19196 ghmquskerco 19197 ghmquskerlem3 19199 ghmqusker 19200 gsumfs2d 33033 algextdeglem4 33731 aks6d1c2lem4 42166 aks6d1c2 42169 aks6d1c6lem2 42210 aks6d1c6lem3 42211 aks6d1c7lem1 42219 aks6d1c7lem2 42220 sge0f1o 46426 isuspgrim0lem 47930 isubgr3stgrlem5 48007 imasubclem1 49142 |
| Copyright terms: Public domain | W3C validator |