MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaexd Structured version   Visualization version   GIF version

Theorem imaexd 7939
Description: The image of a set is a set. Deduction version of imaexg 7936. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypothesis
Ref Expression
rnexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
imaexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem imaexd
StepHypRef Expression
1 rnexd.1 . 2 (𝜑𝐴𝑉)
2 imaexg 7936 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3478  cima 5692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702
This theorem is referenced by:  mptcnfimad  8010  ghmqusnsglem1  19311  ghmqusnsg  19313  ghmquskerlem1  19314  ghmquskerco  19315  ghmquskerlem3  19317  ghmqusker  19318  gsumfs2d  33041  algextdeglem4  33726  aks6d1c2lem4  42109  aks6d1c2  42112  aks6d1c6lem2  42153  aks6d1c6lem3  42154  aks6d1c7lem1  42162  aks6d1c7lem2  42163  sge0f1o  46338  isuspgrim0lem  47809  isubgr3stgrlem5  47873
  Copyright terms: Public domain W3C validator