![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version |
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
imaex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
imaex | ⊢ (𝐴 “ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | imaexg 7338 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 Vcvv 3385 “ cima 5315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-xp 5318 df-cnv 5320 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 |
This theorem is referenced by: frxp 7524 pw2f1o 8307 ssenen 8376 fiint 8479 fissuni 8513 fipreima 8514 marypha1lem 8581 infxpenlem 9122 ackbij2lem2 9350 enfin2i 9431 fin1a2lem7 9516 fpwwe 9756 canthwelem 9760 tskuni 9893 isacs4lem 17483 gicsubgen 18033 gsumzaddlem 18636 isunit 18973 evpmss 20253 psgnevpmb 20254 ptbasfi 21713 hmphdis 21928 ustuqtop0 22372 utopsnneiplem 22379 neipcfilu 22428 nghmfval 22854 fta1glem2 24267 fta1blem 24269 lgsqrlem4 25426 legval 25835 brapply 32558 dfrdg4 32571 |
Copyright terms: Public domain | W3C validator |