MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaex Structured version   Visualization version   GIF version

Theorem imaex 7850
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.)
Hypothesis
Ref Expression
imaex.1 𝐴 ∈ V
Assertion
Ref Expression
imaex (𝐴𝐵) ∈ V

Proof of Theorem imaex
StepHypRef Expression
1 imaex.1 . 2 𝐴 ∈ V
2 imaexg 7849 . 2 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
31, 2ax-mp 5 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  Vcvv 3437  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  frxp  8062  frxp2  8080  frxp3  8087  pw2f1o  9002  ssenen  9071  fiint  9218  fissuni  9248  fipreima  9249  marypha1lem  9324  infxpenlem  9911  ackbij2lem2  10137  enfin2i  10219  fin1a2lem7  10304  fpwwe  10544  canthwelem  10548  tskuni  10681  isacs4lem  18452  gicsubgen  19193  gsumzaddlem  19835  isunit  20293  evpmss  21525  psgnevpmb  21526  ptbasfi  23497  hmphdis  23712  ustuqtop0  24156  utopsnneiplem  24163  neipcfilu  24211  nghmfval  24638  qtopbaslem  24674  fta1glem2  26102  fta1blem  26104  lgsqrlem4  27288  legval  28563  evpmval  33121  altgnsg  33125  elrgspnsubrunlem2  33222  elrspunidl  33400  irngval  33719  zarcmplem  33915  brapply  36001  dfrdg4  36016  ptrest  37680  intima0  43766  elintima  43771  brtrclfv2  43845  imaexi  45343  usgrexmpl12ngric  48163  imasubclem1  49230
  Copyright terms: Public domain W3C validator