| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| imaex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| imaex | ⊢ (𝐴 “ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | imaexg 7889 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: frxp 8105 frxp2 8123 frxp3 8130 pw2f1o 9046 ssenen 9115 fiint 9277 fiintOLD 9278 fissuni 9308 fipreima 9309 marypha1lem 9384 infxpenlem 9966 ackbij2lem2 10192 enfin2i 10274 fin1a2lem7 10359 fpwwe 10599 canthwelem 10603 tskuni 10736 isacs4lem 18503 gicsubgen 19211 gsumzaddlem 19851 isunit 20282 evpmss 21495 psgnevpmb 21496 ptbasfi 23468 hmphdis 23683 ustuqtop0 24128 utopsnneiplem 24135 neipcfilu 24183 nghmfval 24610 qtopbaslem 24646 fta1glem2 26074 fta1blem 26076 lgsqrlem4 27260 legval 28511 evpmval 33102 altgnsg 33106 elrgspnsubrunlem2 33199 elrspunidl 33399 irngval 33680 zarcmplem 33871 brapply 35926 dfrdg4 35939 ptrest 37613 intima0 43637 elintima 43642 brtrclfv2 43716 imaexi 45215 usgrexmpl12ngric 48029 imasubclem1 49093 |
| Copyright terms: Public domain | W3C validator |