![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version |
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
imaex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
imaex | ⊢ (𝐴 “ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | imaexg 7910 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3473 “ cima 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 |
This theorem is referenced by: frxp 8117 frxp2 8135 frxp3 8142 pw2f1o 9083 ssenen 9157 fiint 9330 fissuni 9363 fipreima 9364 marypha1lem 9434 infxpenlem 10014 ackbij2lem2 10241 enfin2i 10322 fin1a2lem7 10407 fpwwe 10647 canthwelem 10651 tskuni 10784 isacs4lem 18507 gicsubgen 19200 gsumzaddlem 19837 isunit 20271 evpmss 21449 psgnevpmb 21450 ptbasfi 23405 hmphdis 23620 ustuqtop0 24065 utopsnneiplem 24072 neipcfilu 24121 nghmfval 24559 qtopbaslem 24595 fta1glem2 26022 fta1blem 26024 lgsqrlem4 27195 legval 28268 evpmval 32740 altgnsg 32744 elrspunidl 32986 irngval 33204 zarcmplem 33325 brapply 35380 dfrdg4 35393 ptrest 36951 intima0 42862 elintima 42867 brtrclfv2 42941 |
Copyright terms: Public domain | W3C validator |