| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| imaex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| imaex | ⊢ (𝐴 “ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | imaexg 7917 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3463 “ cima 5668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 |
| This theorem is referenced by: frxp 8133 frxp2 8151 frxp3 8158 pw2f1o 9099 ssenen 9173 fiint 9348 fiintOLD 9349 fissuni 9379 fipreima 9380 marypha1lem 9455 infxpenlem 10035 ackbij2lem2 10261 enfin2i 10343 fin1a2lem7 10428 fpwwe 10668 canthwelem 10672 tskuni 10805 isacs4lem 18559 gicsubgen 19267 gsumzaddlem 19908 isunit 20342 evpmss 21559 psgnevpmb 21560 ptbasfi 23536 hmphdis 23751 ustuqtop0 24196 utopsnneiplem 24203 neipcfilu 24251 nghmfval 24680 qtopbaslem 24716 fta1glem2 26145 fta1blem 26147 lgsqrlem4 27330 legval 28529 evpmval 33109 altgnsg 33113 elrgspnsubrunlem2 33196 elrspunidl 33396 irngval 33677 zarcmplem 33855 brapply 35914 dfrdg4 35927 ptrest 37601 intima0 43638 elintima 43643 brtrclfv2 43717 imaexi 45198 usgrexmpl12ngric 47970 |
| Copyright terms: Public domain | W3C validator |