| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| imaex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| imaex | ⊢ (𝐴 “ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | imaexg 7914 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 “ cima 5662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 |
| This theorem is referenced by: frxp 8130 frxp2 8148 frxp3 8155 pw2f1o 9096 ssenen 9170 fiint 9343 fiintOLD 9344 fissuni 9374 fipreima 9375 marypha1lem 9450 infxpenlem 10032 ackbij2lem2 10258 enfin2i 10340 fin1a2lem7 10425 fpwwe 10665 canthwelem 10669 tskuni 10802 isacs4lem 18559 gicsubgen 19267 gsumzaddlem 19907 isunit 20338 evpmss 21551 psgnevpmb 21552 ptbasfi 23524 hmphdis 23739 ustuqtop0 24184 utopsnneiplem 24191 neipcfilu 24239 nghmfval 24666 qtopbaslem 24702 fta1glem2 26131 fta1blem 26133 lgsqrlem4 27317 legval 28568 evpmval 33161 altgnsg 33165 elrgspnsubrunlem2 33248 elrspunidl 33448 irngval 33731 zarcmplem 33917 brapply 35961 dfrdg4 35974 ptrest 37648 intima0 43639 elintima 43644 brtrclfv2 43718 imaexi 45212 usgrexmpl12ngric 48009 imasubclem1 49030 |
| Copyright terms: Public domain | W3C validator |