MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaex Structured version   Visualization version   GIF version

Theorem imaex 7937
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.)
Hypothesis
Ref Expression
imaex.1 𝐴 ∈ V
Assertion
Ref Expression
imaex (𝐴𝐵) ∈ V

Proof of Theorem imaex
StepHypRef Expression
1 imaex.1 . 2 𝐴 ∈ V
2 imaexg 7936 . 2 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
31, 2ax-mp 5 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3479  cima 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-xp 5690  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697
This theorem is referenced by:  frxp  8152  frxp2  8170  frxp3  8177  pw2f1o  9118  ssenen  9192  fiint  9367  fiintOLD  9368  fissuni  9398  fipreima  9399  marypha1lem  9474  infxpenlem  10054  ackbij2lem2  10280  enfin2i  10362  fin1a2lem7  10447  fpwwe  10687  canthwelem  10691  tskuni  10824  isacs4lem  18590  gicsubgen  19298  gsumzaddlem  19940  isunit  20374  evpmss  21605  psgnevpmb  21606  ptbasfi  23590  hmphdis  23805  ustuqtop0  24250  utopsnneiplem  24257  neipcfilu  24306  nghmfval  24744  qtopbaslem  24780  fta1glem2  26209  fta1blem  26211  lgsqrlem4  27394  legval  28593  evpmval  33166  altgnsg  33170  elrgspnsubrunlem2  33253  elrspunidl  33457  irngval  33736  zarcmplem  33881  brapply  35940  dfrdg4  35953  ptrest  37627  intima0  43666  elintima  43671  brtrclfv2  43745  imaexi  45231  usgrexmpl12ngric  48002
  Copyright terms: Public domain W3C validator