| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| imaex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| imaex | ⊢ (𝐴 “ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | imaexg 7849 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: frxp 8062 frxp2 8080 frxp3 8087 pw2f1o 9002 ssenen 9071 fiint 9218 fissuni 9248 fipreima 9249 marypha1lem 9324 infxpenlem 9911 ackbij2lem2 10137 enfin2i 10219 fin1a2lem7 10304 fpwwe 10544 canthwelem 10548 tskuni 10681 isacs4lem 18452 gicsubgen 19193 gsumzaddlem 19835 isunit 20293 evpmss 21525 psgnevpmb 21526 ptbasfi 23497 hmphdis 23712 ustuqtop0 24156 utopsnneiplem 24163 neipcfilu 24211 nghmfval 24638 qtopbaslem 24674 fta1glem2 26102 fta1blem 26104 lgsqrlem4 27288 legval 28563 evpmval 33121 altgnsg 33125 elrgspnsubrunlem2 33222 elrspunidl 33400 irngval 33719 zarcmplem 33915 brapply 36001 dfrdg4 36016 ptrest 37680 intima0 43766 elintima 43771 brtrclfv2 43845 imaexi 45343 usgrexmpl12ngric 48163 imasubclem1 49230 |
| Copyright terms: Public domain | W3C validator |