| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| imaex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| imaex | ⊢ (𝐴 “ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | imaexg 7892 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: frxp 8108 frxp2 8126 frxp3 8133 pw2f1o 9051 ssenen 9121 fiint 9284 fiintOLD 9285 fissuni 9315 fipreima 9316 marypha1lem 9391 infxpenlem 9973 ackbij2lem2 10199 enfin2i 10281 fin1a2lem7 10366 fpwwe 10606 canthwelem 10610 tskuni 10743 isacs4lem 18510 gicsubgen 19218 gsumzaddlem 19858 isunit 20289 evpmss 21502 psgnevpmb 21503 ptbasfi 23475 hmphdis 23690 ustuqtop0 24135 utopsnneiplem 24142 neipcfilu 24190 nghmfval 24617 qtopbaslem 24653 fta1glem2 26081 fta1blem 26083 lgsqrlem4 27267 legval 28518 evpmval 33109 altgnsg 33113 elrgspnsubrunlem2 33206 elrspunidl 33406 irngval 33687 zarcmplem 33878 brapply 35933 dfrdg4 35946 ptrest 37620 intima0 43644 elintima 43649 brtrclfv2 43723 imaexi 45222 usgrexmpl12ngric 48033 imasubclem1 49097 |
| Copyright terms: Public domain | W3C validator |