![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version |
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
imaex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
imaex | ⊢ (𝐴 “ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | imaexg 7953 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: frxp 8167 frxp2 8185 frxp3 8192 pw2f1o 9143 ssenen 9217 fiint 9394 fiintOLD 9395 fissuni 9427 fipreima 9428 marypha1lem 9502 infxpenlem 10082 ackbij2lem2 10308 enfin2i 10390 fin1a2lem7 10475 fpwwe 10715 canthwelem 10719 tskuni 10852 isacs4lem 18614 gicsubgen 19319 gsumzaddlem 19963 isunit 20399 evpmss 21627 psgnevpmb 21628 ptbasfi 23610 hmphdis 23825 ustuqtop0 24270 utopsnneiplem 24277 neipcfilu 24326 nghmfval 24764 qtopbaslem 24800 fta1glem2 26228 fta1blem 26230 lgsqrlem4 27411 legval 28610 evpmval 33138 altgnsg 33142 elrspunidl 33421 irngval 33685 zarcmplem 33827 brapply 35902 dfrdg4 35915 ptrest 37579 intima0 43610 elintima 43615 brtrclfv2 43689 imaexi 45128 usgrexmpl12ngric 47853 |
Copyright terms: Public domain | W3C validator |