| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| imaex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| imaex | ⊢ (𝐴 “ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | imaexg 7843 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 “ cima 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: frxp 8056 frxp2 8074 frxp3 8081 pw2f1o 8995 ssenen 9064 fiint 9211 fissuni 9241 fipreima 9242 marypha1lem 9317 infxpenlem 9904 ackbij2lem2 10130 enfin2i 10212 fin1a2lem7 10297 fpwwe 10537 canthwelem 10541 tskuni 10674 isacs4lem 18450 gicsubgen 19192 gsumzaddlem 19834 isunit 20292 evpmss 21524 psgnevpmb 21525 ptbasfi 23497 hmphdis 23712 ustuqtop0 24156 utopsnneiplem 24163 neipcfilu 24211 nghmfval 24638 qtopbaslem 24674 fta1glem2 26102 fta1blem 26104 lgsqrlem4 27288 legval 28563 evpmval 33112 altgnsg 33116 elrgspnsubrunlem2 33213 elrspunidl 33391 irngval 33696 zarcmplem 33892 brapply 35978 dfrdg4 35991 ptrest 37665 intima0 43687 elintima 43692 brtrclfv2 43766 imaexi 45264 usgrexmpl12ngric 48075 imasubclem1 49142 |
| Copyright terms: Public domain | W3C validator |