Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version |
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
imaex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
imaex | ⊢ (𝐴 “ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | imaexg 7736 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: frxp 7938 pw2f1o 8817 ssenen 8887 fiint 9021 fissuni 9054 fipreima 9055 marypha1lem 9122 infxpenlem 9700 ackbij2lem2 9927 enfin2i 10008 fin1a2lem7 10093 fpwwe 10333 canthwelem 10337 tskuni 10470 isacs4lem 18177 gicsubgen 18809 gsumzaddlem 19437 isunit 19814 evpmss 20703 psgnevpmb 20704 ptbasfi 22640 hmphdis 22855 ustuqtop0 23300 utopsnneiplem 23307 neipcfilu 23356 nghmfval 23792 qtopbaslem 23828 fta1glem2 25236 fta1blem 25238 lgsqrlem4 26402 legval 26849 evpmval 31314 altgnsg 31318 elrspunidl 31508 zarcmplem 31733 frxp2 33718 frxp3 33724 brapply 34167 dfrdg4 34180 ptrest 35703 intima0 41145 elintima 41150 brtrclfv2 41224 |
Copyright terms: Public domain | W3C validator |