|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| imaex.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| imaex | ⊢ (𝐴 “ 𝐵) ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | imaexg 7936 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∈ wcel 2107 Vcvv 3479 “ cima 5687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 | 
| This theorem is referenced by: frxp 8152 frxp2 8170 frxp3 8177 pw2f1o 9118 ssenen 9192 fiint 9367 fiintOLD 9368 fissuni 9398 fipreima 9399 marypha1lem 9474 infxpenlem 10054 ackbij2lem2 10280 enfin2i 10362 fin1a2lem7 10447 fpwwe 10687 canthwelem 10691 tskuni 10824 isacs4lem 18590 gicsubgen 19298 gsumzaddlem 19940 isunit 20374 evpmss 21605 psgnevpmb 21606 ptbasfi 23590 hmphdis 23805 ustuqtop0 24250 utopsnneiplem 24257 neipcfilu 24306 nghmfval 24744 qtopbaslem 24780 fta1glem2 26209 fta1blem 26211 lgsqrlem4 27394 legval 28593 evpmval 33166 altgnsg 33170 elrgspnsubrunlem2 33253 elrspunidl 33457 irngval 33736 zarcmplem 33881 brapply 35940 dfrdg4 35953 ptrest 37627 intima0 43666 elintima 43671 brtrclfv2 43745 imaexi 45231 usgrexmpl12ngric 48002 | 
| Copyright terms: Public domain | W3C validator |