| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaex | Structured version Visualization version GIF version | ||
| Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| imaex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| imaex | ⊢ (𝐴 “ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | imaexg 7853 | . 2 ⊢ (𝐴 ∈ V → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 “ cima 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: frxp 8066 frxp2 8084 frxp3 8091 pw2f1o 9006 ssenen 9075 fiint 9235 fiintOLD 9236 fissuni 9266 fipreima 9267 marypha1lem 9342 infxpenlem 9926 ackbij2lem2 10152 enfin2i 10234 fin1a2lem7 10319 fpwwe 10559 canthwelem 10563 tskuni 10696 isacs4lem 18468 gicsubgen 19176 gsumzaddlem 19818 isunit 20276 evpmss 21511 psgnevpmb 21512 ptbasfi 23484 hmphdis 23699 ustuqtop0 24144 utopsnneiplem 24151 neipcfilu 24199 nghmfval 24626 qtopbaslem 24662 fta1glem2 26090 fta1blem 26092 lgsqrlem4 27276 legval 28547 evpmval 33100 altgnsg 33104 elrgspnsubrunlem2 33201 elrspunidl 33378 irngval 33659 zarcmplem 33850 brapply 35914 dfrdg4 35927 ptrest 37601 intima0 43624 elintima 43629 brtrclfv2 43703 imaexi 45202 usgrexmpl12ngric 48026 imasubclem1 49093 |
| Copyright terms: Public domain | W3C validator |