| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7696 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7696 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun2 4138 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5926 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3953 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5273 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 ⊆ wss 3911 ∪ cuni 4867 dom cdm 5631 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: rnex 7866 imaexg 7869 rnexd 7871 xpexr 7874 xpexr2 7875 soex 7877 cnvexg 7880 coexg 7885 cofunexg 7907 funrnex 7912 tposexg 8196 iunon 8285 onoviun 8289 tz7.44lem1 8350 tz7.44-3 8353 fopwdom 9026 disjen 9075 domss2 9077 domssex 9079 hartogslem2 9472 ttrclexg 9652 djuexb 9838 dfac12lem2 10074 unirnfdomd 10496 hashimarn 14381 trclexlem 14936 relexp0g 14964 relexpsucnnr 14967 restval 17365 prdsbas 17396 prdsplusg 17397 prdsmulr 17398 prdsvsca 17399 prdshom 17406 sscpwex 17757 sylow1lem4 19515 sylow3lem2 19542 sylow3lem3 19543 lsmvalx 19553 txindislem 23553 xkoptsub 23574 fmfnfmlem3 23876 fmfnfmlem4 23877 ustuqtoplem 24160 ustuqtop0 24161 utopsnneiplem 24168 efabl 26492 efsubm 26493 addsuniflem 27948 ssltmul1 28090 ssltmul2 28091 precsexlem11 28159 perpln1 28690 perpln2 28691 isperp 28692 lmif 28765 islmib 28767 isgrpo 30476 grpoinvfval 30501 grpodivfval 30513 isvcOLD 30558 isnv 30591 abrexexd 32488 acunirnmpt 32633 acunirnmpt2 32634 acunirnmpt2f 32635 fnpreimac 32645 locfinreflem 33823 esumrnmpt2 34051 sxsigon 34175 omssubadd 34284 carsgclctunlem2 34303 pmeasadd 34309 sitgclg 34326 bnj1366 34812 ptrest 37606 elghomlem1OLD 37872 elghomlem2OLD 37873 isrngod 37885 iscringd 37985 xrnresex 38385 dfcnvrefrels2 38512 dfcnvrefrels3 38513 sticksstones3 42129 lmhmlnmsplit 43069 rclexi 43597 rtrclexlem 43598 trclubgNEW 43600 cnvrcl0 43607 dfrtrcl5 43611 relexpmulg 43692 relexp01min 43695 relexpxpmin 43699 unirnmap 45195 unirnmapsn 45201 ssmapsn 45203 fourierdlem70 46167 fourierdlem71 46168 fourierdlem80 46177 meadjiunlem 46456 omeiunle 46508 fexafv2ex 47214 |
| Copyright terms: Public domain | W3C validator |