| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7760 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7760 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun2 4179 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5984 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3993 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5323 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3480 ∪ cun 3949 ⊆ wss 3951 ∪ cuni 4907 dom cdm 5685 ran crn 5686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-cnv 5693 df-dm 5695 df-rn 5696 |
| This theorem is referenced by: rnex 7932 imaexg 7935 rnexd 7937 xpexr 7940 xpexr2 7941 soex 7943 cnvexg 7946 coexg 7951 cofunexg 7973 funrnex 7978 abrexexgOLD 7986 tposexg 8265 iunon 8379 onoviun 8383 tz7.44lem1 8445 tz7.44-3 8448 fopwdom 9120 disjen 9174 domss2 9176 domssex 9178 hartogslem2 9583 ttrclexg 9763 djuexb 9949 dfac12lem2 10185 unirnfdomd 10607 hashimarn 14479 trclexlem 15033 relexp0g 15061 relexpsucnnr 15064 restval 17471 prdsbas 17502 prdsplusg 17503 prdsmulr 17504 prdsvsca 17505 prdshom 17512 sscpwex 17859 sylow1lem4 19619 sylow3lem2 19646 sylow3lem3 19647 lsmvalx 19657 txindislem 23641 xkoptsub 23662 fmfnfmlem3 23964 fmfnfmlem4 23965 ustuqtoplem 24248 ustuqtop0 24249 utopsnneiplem 24256 efabl 26592 efsubm 26593 addsuniflem 28034 ssltmul1 28173 ssltmul2 28174 precsexlem11 28241 perpln1 28718 perpln2 28719 isperp 28720 lmif 28793 islmib 28795 isgrpo 30516 grpoinvfval 30541 grpodivfval 30553 isvcOLD 30598 isnv 30631 abrexexd 32528 acunirnmpt 32669 acunirnmpt2 32670 acunirnmpt2f 32671 fnpreimac 32681 locfinreflem 33839 esumrnmpt2 34069 sxsigon 34193 omssubadd 34302 carsgclctunlem2 34321 pmeasadd 34327 sitgclg 34344 bnj1366 34843 ptrest 37626 elghomlem1OLD 37892 elghomlem2OLD 37893 isrngod 37905 iscringd 38005 imaexALTV 38331 xrnresex 38407 dfcnvrefrels2 38529 dfcnvrefrels3 38530 sticksstones3 42149 lmhmlnmsplit 43099 rclexi 43628 rtrclexlem 43629 trclubgNEW 43631 cnvrcl0 43638 dfrtrcl5 43642 relexpmulg 43723 relexp01min 43726 relexpxpmin 43730 unirnmap 45213 unirnmapsn 45219 ssmapsn 45221 fourierdlem70 46191 fourierdlem71 46192 fourierdlem80 46201 meadjiunlem 46480 omeiunle 46532 fexafv2ex 47232 |
| Copyright terms: Public domain | W3C validator |