| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7673 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7673 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun2 4126 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5912 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3939 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5259 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 ∪ cuni 4856 dom cdm 5614 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: rnex 7840 imaexg 7843 rnexd 7845 xpexr 7848 xpexr2 7849 soex 7851 cnvexg 7854 coexg 7859 cofunexg 7881 funrnex 7886 tposexg 8170 iunon 8259 onoviun 8263 tz7.44lem1 8324 tz7.44-3 8327 fopwdom 8998 disjen 9047 domss2 9049 domssex 9051 hartogslem2 9429 ttrclexg 9613 djuexb 9802 dfac12lem2 10036 unirnfdomd 10458 hashimarn 14347 trclexlem 14901 relexp0g 14929 relexpsucnnr 14932 restval 17330 prdsbas 17361 prdsplusg 17362 prdsmulr 17363 prdsvsca 17364 prdshom 17371 sscpwex 17722 sylow1lem4 19513 sylow3lem2 19540 sylow3lem3 19541 lsmvalx 19551 txindislem 23548 xkoptsub 23569 fmfnfmlem3 23871 fmfnfmlem4 23872 ustuqtoplem 24154 ustuqtop0 24155 utopsnneiplem 24162 efabl 26486 efsubm 26487 addsuniflem 27944 ssltmul1 28086 ssltmul2 28087 precsexlem11 28155 perpln1 28688 perpln2 28689 isperp 28690 lmif 28763 islmib 28765 isgrpo 30477 grpoinvfval 30502 grpodivfval 30514 isvcOLD 30559 isnv 30592 abrexexd 32489 acunirnmpt 32641 acunirnmpt2 32642 acunirnmpt2f 32643 fnpreimac 32653 locfinreflem 33853 esumrnmpt2 34081 sxsigon 34205 omssubadd 34313 carsgclctunlem2 34332 pmeasadd 34338 sitgclg 34355 bnj1366 34841 ptrest 37669 elghomlem1OLD 37935 elghomlem2OLD 37936 isrngod 37948 iscringd 38048 xrnresex 38463 dfcnvrefrels2 38630 dfcnvrefrels3 38631 sticksstones3 42251 lmhmlnmsplit 43190 rclexi 43718 rtrclexlem 43719 trclubgNEW 43721 cnvrcl0 43728 dfrtrcl5 43732 relexpmulg 43813 relexp01min 43816 relexpxpmin 43820 unirnmap 45315 unirnmapsn 45321 ssmapsn 45323 fourierdlem70 46284 fourierdlem71 46285 fourierdlem80 46294 meadjiunlem 46573 omeiunle 46625 fexafv2ex 47330 |
| Copyright terms: Public domain | W3C validator |