![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version |
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7758 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | uniexg 7758 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
3 | ssun2 4188 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
4 | dmrnssfld 5986 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
5 | 3, 4 | sstri 4004 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
6 | ssexg 5328 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3477 ∪ cun 3960 ⊆ wss 3962 ∪ cuni 4911 dom cdm 5688 ran crn 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-cnv 5696 df-dm 5698 df-rn 5699 |
This theorem is referenced by: rnex 7932 imaexg 7935 rnexd 7937 xpexr 7940 xpexr2 7941 soex 7943 cnvexg 7946 coexg 7951 cofunexg 7971 funrnex 7976 abrexexgOLD 7984 tposexg 8263 iunon 8377 onoviun 8381 tz7.44lem1 8443 tz7.44-3 8446 fopwdom 9118 disjen 9172 domss2 9174 domssex 9176 hartogslem2 9580 ttrclexg 9760 djuexb 9946 dfac12lem2 10182 unirnfdomd 10604 hashimarn 14475 trclexlem 15029 relexp0g 15057 relexpsucnnr 15060 restval 17472 prdsbas 17503 prdsplusg 17504 prdsmulr 17505 prdsvsca 17506 prdshom 17513 sscpwex 17862 sylow1lem4 19633 sylow3lem2 19660 sylow3lem3 19661 lsmvalx 19671 txindislem 23656 xkoptsub 23677 fmfnfmlem3 23979 fmfnfmlem4 23980 ustuqtoplem 24263 ustuqtop0 24264 utopsnneiplem 24271 efabl 26606 efsubm 26607 addsuniflem 28048 ssltmul1 28187 ssltmul2 28188 precsexlem11 28255 perpln1 28732 perpln2 28733 isperp 28734 lmif 28807 islmib 28809 isgrpo 30525 grpoinvfval 30550 grpodivfval 30562 isvcOLD 30607 isnv 30640 abrexexd 32536 acunirnmpt 32675 acunirnmpt2 32676 acunirnmpt2f 32677 fnpreimac 32687 locfinreflem 33800 esumrnmpt2 34048 sxsigon 34172 omssubadd 34281 carsgclctunlem2 34300 pmeasadd 34306 sitgclg 34323 bnj1366 34821 ptrest 37605 elghomlem1OLD 37871 elghomlem2OLD 37872 isrngod 37884 iscringd 37984 imaexALTV 38311 xrnresex 38387 dfcnvrefrels2 38509 dfcnvrefrels3 38510 sticksstones3 42129 lmhmlnmsplit 43075 rclexi 43604 rtrclexlem 43605 trclubgNEW 43607 cnvrcl0 43614 dfrtrcl5 43618 relexpmulg 43699 relexp01min 43702 relexpxpmin 43706 unirnmap 45150 unirnmapsn 45156 ssmapsn 45158 fourierdlem70 46131 fourierdlem71 46132 fourierdlem80 46141 meadjiunlem 46420 omeiunle 46472 fexafv2ex 47169 |
Copyright terms: Public domain | W3C validator |