Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version |
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7571 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | uniexg 7571 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
3 | ssun2 4103 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
4 | dmrnssfld 5868 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
5 | 3, 4 | sstri 3926 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
6 | ssexg 5242 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
7 | 5, 6 | mpan 686 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 ∪ cuni 4836 dom cdm 5580 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: rnex 7733 imaexg 7736 xpexr 7739 xpexr2 7740 soex 7742 cnvexg 7745 coexg 7750 cofunexg 7765 funrnex 7770 abrexexg 7777 tposexg 8027 iunon 8141 onoviun 8145 tz7.44lem1 8207 tz7.44-3 8210 fopwdom 8820 disjen 8870 domss2 8872 domssex 8874 hartogslem2 9232 djuexb 9598 dfac12lem2 9831 unirnfdomd 10254 focdmex 13993 hashimarn 14083 trclexlem 14633 relexp0g 14661 relexpsucnnr 14664 restval 17054 prdsbas 17085 prdsplusg 17086 prdsmulr 17087 prdsvsca 17088 prdshom 17095 sscpwex 17444 sylow1lem4 19121 sylow3lem2 19148 sylow3lem3 19149 lsmvalx 19159 txindislem 22692 xkoptsub 22713 fmfnfmlem3 23015 fmfnfmlem4 23016 ustuqtoplem 23299 ustuqtop0 23300 utopsnneiplem 23307 efabl 25611 efsubm 25612 perpln1 26975 perpln2 26976 isperp 26977 lmif 27050 islmib 27052 isgrpo 28760 grpoinvfval 28785 grpodivfval 28797 isvcOLD 28842 isnv 28875 abrexexd 30755 acunirnmpt 30898 acunirnmpt2 30899 acunirnmpt2f 30900 fnpreimac 30910 locfinreflem 31692 esumrnmpt2 31936 sxsigon 32060 omssubadd 32167 carsgclctunlem2 32186 pmeasadd 32192 sitgclg 32209 bnj1366 32709 ttrclexg 33709 ptrest 35703 elghomlem1OLD 35970 elghomlem2OLD 35971 isrngod 35983 iscringd 36083 imaexALTV 36392 xrnresex 36459 dfcnvrefrels2 36571 dfcnvrefrels3 36572 sticksstones3 40032 lmhmlnmsplit 40828 rclexi 41112 rtrclexlem 41113 trclubgNEW 41115 cnvrcl0 41122 dfrtrcl5 41126 relexpmulg 41207 relexp01min 41210 relexpxpmin 41214 unirnmap 42637 unirnmapsn 42643 ssmapsn 42645 fourierdlem70 43607 fourierdlem71 43608 fourierdlem80 43617 meadjiunlem 43893 omeiunle 43945 fexafv2ex 44599 |
Copyright terms: Public domain | W3C validator |