![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version |
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7730 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | uniexg 7730 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
3 | ssun2 4174 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
4 | dmrnssfld 5970 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
5 | 3, 4 | sstri 3992 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
6 | ssexg 5324 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
7 | 5, 6 | mpan 689 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3475 ∪ cun 3947 ⊆ wss 3949 ∪ cuni 4909 dom cdm 5677 ran crn 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-cnv 5685 df-dm 5687 df-rn 5688 |
This theorem is referenced by: rnex 7903 imaexg 7906 xpexr 7909 xpexr2 7910 soex 7912 cnvexg 7915 coexg 7920 cofunexg 7935 funrnex 7940 abrexexgOLD 7948 tposexg 8225 iunon 8339 onoviun 8343 tz7.44lem1 8405 tz7.44-3 8408 fopwdom 9080 disjen 9134 domss2 9136 domssex 9138 hartogslem2 9538 ttrclexg 9718 djuexb 9904 dfac12lem2 10139 unirnfdomd 10562 hashimarn 14400 trclexlem 14941 relexp0g 14969 relexpsucnnr 14972 restval 17372 prdsbas 17403 prdsplusg 17404 prdsmulr 17405 prdsvsca 17406 prdshom 17413 sscpwex 17762 sylow1lem4 19469 sylow3lem2 19496 sylow3lem3 19497 lsmvalx 19507 txindislem 23137 xkoptsub 23158 fmfnfmlem3 23460 fmfnfmlem4 23461 ustuqtoplem 23744 ustuqtop0 23745 utopsnneiplem 23752 efabl 26059 efsubm 26060 addsuniflem 27484 ssltmul1 27602 ssltmul2 27603 precsexlem11 27663 perpln1 27961 perpln2 27962 isperp 27963 lmif 28036 islmib 28038 isgrpo 29750 grpoinvfval 29775 grpodivfval 29787 isvcOLD 29832 isnv 29865 abrexexd 31746 acunirnmpt 31884 acunirnmpt2 31885 acunirnmpt2f 31886 fnpreimac 31896 rnexd 31903 locfinreflem 32820 esumrnmpt2 33066 sxsigon 33190 omssubadd 33299 carsgclctunlem2 33318 pmeasadd 33324 sitgclg 33341 bnj1366 33840 ptrest 36487 elghomlem1OLD 36753 elghomlem2OLD 36754 isrngod 36766 iscringd 36866 imaexALTV 37199 xrnresex 37276 dfcnvrefrels2 37398 dfcnvrefrels3 37399 sticksstones3 40964 lmhmlnmsplit 41829 rclexi 42366 rtrclexlem 42367 trclubgNEW 42369 cnvrcl0 42376 dfrtrcl5 42380 relexpmulg 42461 relexp01min 42464 relexpxpmin 42468 unirnmap 43907 unirnmapsn 43913 ssmapsn 43915 fourierdlem70 44892 fourierdlem71 44893 fourierdlem80 44902 meadjiunlem 45181 omeiunle 45233 fexafv2ex 45928 |
Copyright terms: Public domain | W3C validator |