MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnexg Structured version   Visualization version   GIF version

Theorem rnexg 7751
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
rnexg (𝐴𝑉 → ran 𝐴 ∈ V)

Proof of Theorem rnexg
StepHypRef Expression
1 uniexg 7593 . 2 (𝐴𝑉 𝐴 ∈ V)
2 uniexg 7593 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
3 ssun2 4107 . . . 4 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
4 dmrnssfld 5879 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
53, 4sstri 3930 . . 3 ran 𝐴 𝐴
6 ssexg 5247 . . 3 ((ran 𝐴 𝐴 𝐴 ∈ V) → ran 𝐴 ∈ V)
75, 6mpan 687 . 2 ( 𝐴 ∈ V → ran 𝐴 ∈ V)
81, 2, 73syl 18 1 (𝐴𝑉 → ran 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3432  cun 3885  wss 3887   cuni 4839  dom cdm 5589  ran crn 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  rnex  7759  imaexg  7762  xpexr  7765  xpexr2  7766  soex  7768  cnvexg  7771  coexg  7776  cofunexg  7791  funrnex  7796  abrexexgOLD  7804  tposexg  8056  iunon  8170  onoviun  8174  tz7.44lem1  8236  tz7.44-3  8239  fopwdom  8867  disjen  8921  domss2  8923  domssex  8925  hartogslem2  9302  ttrclexg  9481  djuexb  9667  dfac12lem2  9900  unirnfdomd  10323  focdmex  14065  hashimarn  14155  trclexlem  14705  relexp0g  14733  relexpsucnnr  14736  restval  17137  prdsbas  17168  prdsplusg  17169  prdsmulr  17170  prdsvsca  17171  prdshom  17178  sscpwex  17527  sylow1lem4  19206  sylow3lem2  19233  sylow3lem3  19234  lsmvalx  19244  txindislem  22784  xkoptsub  22805  fmfnfmlem3  23107  fmfnfmlem4  23108  ustuqtoplem  23391  ustuqtop0  23392  utopsnneiplem  23399  efabl  25706  efsubm  25707  perpln1  27071  perpln2  27072  isperp  27073  lmif  27146  islmib  27148  isgrpo  28859  grpoinvfval  28884  grpodivfval  28896  isvcOLD  28941  isnv  28974  abrexexd  30854  acunirnmpt  30996  acunirnmpt2  30997  acunirnmpt2f  30998  fnpreimac  31008  locfinreflem  31790  esumrnmpt2  32036  sxsigon  32160  omssubadd  32267  carsgclctunlem2  32286  pmeasadd  32292  sitgclg  32309  bnj1366  32809  ptrest  35776  elghomlem1OLD  36043  elghomlem2OLD  36044  isrngod  36056  iscringd  36156  imaexALTV  36465  xrnresex  36532  dfcnvrefrels2  36644  dfcnvrefrels3  36645  sticksstones3  40104  lmhmlnmsplit  40912  rclexi  41223  rtrclexlem  41224  trclubgNEW  41226  cnvrcl0  41233  dfrtrcl5  41237  relexpmulg  41318  relexp01min  41321  relexpxpmin  41325  unirnmap  42748  unirnmapsn  42754  ssmapsn  42756  fourierdlem70  43717  fourierdlem71  43718  fourierdlem80  43727  meadjiunlem  44003  omeiunle  44055  fexafv2ex  44712
  Copyright terms: Public domain W3C validator