| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7676 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7676 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun2 4130 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5915 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3945 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5262 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 ∪ cun 3901 ⊆ wss 3903 ∪ cuni 4858 dom cdm 5619 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: rnex 7843 imaexg 7846 rnexd 7848 xpexr 7851 xpexr2 7852 soex 7854 cnvexg 7857 coexg 7862 cofunexg 7884 funrnex 7889 tposexg 8173 iunon 8262 onoviun 8266 tz7.44lem1 8327 tz7.44-3 8330 fopwdom 9002 disjen 9051 domss2 9053 domssex 9055 hartogslem2 9435 ttrclexg 9619 djuexb 9805 dfac12lem2 10039 unirnfdomd 10461 hashimarn 14347 trclexlem 14901 relexp0g 14929 relexpsucnnr 14932 restval 17330 prdsbas 17361 prdsplusg 17362 prdsmulr 17363 prdsvsca 17364 prdshom 17371 sscpwex 17722 sylow1lem4 19480 sylow3lem2 19507 sylow3lem3 19508 lsmvalx 19518 txindislem 23518 xkoptsub 23539 fmfnfmlem3 23841 fmfnfmlem4 23842 ustuqtoplem 24125 ustuqtop0 24126 utopsnneiplem 24133 efabl 26457 efsubm 26458 addsuniflem 27913 ssltmul1 28055 ssltmul2 28056 precsexlem11 28124 perpln1 28655 perpln2 28656 isperp 28657 lmif 28730 islmib 28732 isgrpo 30441 grpoinvfval 30466 grpodivfval 30478 isvcOLD 30523 isnv 30556 abrexexd 32453 acunirnmpt 32602 acunirnmpt2 32603 acunirnmpt2f 32604 fnpreimac 32614 locfinreflem 33807 esumrnmpt2 34035 sxsigon 34159 omssubadd 34268 carsgclctunlem2 34287 pmeasadd 34293 sitgclg 34310 bnj1366 34796 ptrest 37603 elghomlem1OLD 37869 elghomlem2OLD 37870 isrngod 37882 iscringd 37982 xrnresex 38382 dfcnvrefrels2 38509 dfcnvrefrels3 38510 sticksstones3 42125 lmhmlnmsplit 43064 rclexi 43592 rtrclexlem 43593 trclubgNEW 43595 cnvrcl0 43602 dfrtrcl5 43606 relexpmulg 43687 relexp01min 43690 relexpxpmin 43694 unirnmap 45190 unirnmapsn 45196 ssmapsn 45198 fourierdlem70 46161 fourierdlem71 46162 fourierdlem80 46171 meadjiunlem 46450 omeiunle 46502 fexafv2ex 47208 |
| Copyright terms: Public domain | W3C validator |