| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7716 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7716 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun2 4142 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5937 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3956 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5278 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 ∪ cuni 4871 dom cdm 5638 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: rnex 7886 imaexg 7889 rnexd 7891 xpexr 7894 xpexr2 7895 soex 7897 cnvexg 7900 coexg 7905 cofunexg 7927 funrnex 7932 abrexexgOLD 7940 tposexg 8219 iunon 8308 onoviun 8312 tz7.44lem1 8373 tz7.44-3 8376 fopwdom 9049 disjen 9098 domss2 9100 domssex 9102 hartogslem2 9496 ttrclexg 9676 djuexb 9862 dfac12lem2 10098 unirnfdomd 10520 hashimarn 14405 trclexlem 14960 relexp0g 14988 relexpsucnnr 14991 restval 17389 prdsbas 17420 prdsplusg 17421 prdsmulr 17422 prdsvsca 17423 prdshom 17430 sscpwex 17777 sylow1lem4 19531 sylow3lem2 19558 sylow3lem3 19559 lsmvalx 19569 txindislem 23520 xkoptsub 23541 fmfnfmlem3 23843 fmfnfmlem4 23844 ustuqtoplem 24127 ustuqtop0 24128 utopsnneiplem 24135 efabl 26459 efsubm 26460 addsuniflem 27908 ssltmul1 28050 ssltmul2 28051 precsexlem11 28119 perpln1 28637 perpln2 28638 isperp 28639 lmif 28712 islmib 28714 isgrpo 30426 grpoinvfval 30451 grpodivfval 30463 isvcOLD 30508 isnv 30541 abrexexd 32438 acunirnmpt 32583 acunirnmpt2 32584 acunirnmpt2f 32585 fnpreimac 32595 locfinreflem 33830 esumrnmpt2 34058 sxsigon 34182 omssubadd 34291 carsgclctunlem2 34310 pmeasadd 34316 sitgclg 34333 bnj1366 34819 ptrest 37613 elghomlem1OLD 37879 elghomlem2OLD 37880 isrngod 37892 iscringd 37992 xrnresex 38392 dfcnvrefrels2 38519 dfcnvrefrels3 38520 sticksstones3 42136 lmhmlnmsplit 43076 rclexi 43604 rtrclexlem 43605 trclubgNEW 43607 cnvrcl0 43614 dfrtrcl5 43618 relexpmulg 43699 relexp01min 43702 relexpxpmin 43706 unirnmap 45202 unirnmapsn 45208 ssmapsn 45210 fourierdlem70 46174 fourierdlem71 46175 fourierdlem80 46184 meadjiunlem 46463 omeiunle 46515 fexafv2ex 47221 |
| Copyright terms: Public domain | W3C validator |