Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version |
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7593 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | uniexg 7593 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
3 | ssun2 4107 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
4 | dmrnssfld 5879 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
5 | 3, 4 | sstri 3930 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
6 | ssexg 5247 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
7 | 5, 6 | mpan 687 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 ∪ cuni 4839 dom cdm 5589 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: rnex 7759 imaexg 7762 xpexr 7765 xpexr2 7766 soex 7768 cnvexg 7771 coexg 7776 cofunexg 7791 funrnex 7796 abrexexgOLD 7804 tposexg 8056 iunon 8170 onoviun 8174 tz7.44lem1 8236 tz7.44-3 8239 fopwdom 8867 disjen 8921 domss2 8923 domssex 8925 hartogslem2 9302 ttrclexg 9481 djuexb 9667 dfac12lem2 9900 unirnfdomd 10323 focdmex 14065 hashimarn 14155 trclexlem 14705 relexp0g 14733 relexpsucnnr 14736 restval 17137 prdsbas 17168 prdsplusg 17169 prdsmulr 17170 prdsvsca 17171 prdshom 17178 sscpwex 17527 sylow1lem4 19206 sylow3lem2 19233 sylow3lem3 19234 lsmvalx 19244 txindislem 22784 xkoptsub 22805 fmfnfmlem3 23107 fmfnfmlem4 23108 ustuqtoplem 23391 ustuqtop0 23392 utopsnneiplem 23399 efabl 25706 efsubm 25707 perpln1 27071 perpln2 27072 isperp 27073 lmif 27146 islmib 27148 isgrpo 28859 grpoinvfval 28884 grpodivfval 28896 isvcOLD 28941 isnv 28974 abrexexd 30854 acunirnmpt 30996 acunirnmpt2 30997 acunirnmpt2f 30998 fnpreimac 31008 locfinreflem 31790 esumrnmpt2 32036 sxsigon 32160 omssubadd 32267 carsgclctunlem2 32286 pmeasadd 32292 sitgclg 32309 bnj1366 32809 ptrest 35776 elghomlem1OLD 36043 elghomlem2OLD 36044 isrngod 36056 iscringd 36156 imaexALTV 36465 xrnresex 36532 dfcnvrefrels2 36644 dfcnvrefrels3 36645 sticksstones3 40104 lmhmlnmsplit 40912 rclexi 41223 rtrclexlem 41224 trclubgNEW 41226 cnvrcl0 41233 dfrtrcl5 41237 relexpmulg 41318 relexp01min 41321 relexpxpmin 41325 unirnmap 42748 unirnmapsn 42754 ssmapsn 42756 fourierdlem70 43717 fourierdlem71 43718 fourierdlem80 43727 meadjiunlem 44003 omeiunle 44055 fexafv2ex 44712 |
Copyright terms: Public domain | W3C validator |