| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7732 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7732 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun2 4154 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5953 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3968 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5293 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 ∪ cuni 4883 dom cdm 5654 ran crn 5655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: rnex 7904 imaexg 7907 rnexd 7909 xpexr 7912 xpexr2 7913 soex 7915 cnvexg 7918 coexg 7923 cofunexg 7945 funrnex 7950 abrexexgOLD 7958 tposexg 8237 iunon 8351 onoviun 8355 tz7.44lem1 8417 tz7.44-3 8420 fopwdom 9092 disjen 9146 domss2 9148 domssex 9150 hartogslem2 9555 ttrclexg 9735 djuexb 9921 dfac12lem2 10157 unirnfdomd 10579 hashimarn 14456 trclexlem 15011 relexp0g 15039 relexpsucnnr 15042 restval 17438 prdsbas 17469 prdsplusg 17470 prdsmulr 17471 prdsvsca 17472 prdshom 17479 sscpwex 17826 sylow1lem4 19580 sylow3lem2 19607 sylow3lem3 19608 lsmvalx 19618 txindislem 23569 xkoptsub 23590 fmfnfmlem3 23892 fmfnfmlem4 23893 ustuqtoplem 24176 ustuqtop0 24177 utopsnneiplem 24184 efabl 26509 efsubm 26510 addsuniflem 27951 ssltmul1 28090 ssltmul2 28091 precsexlem11 28158 perpln1 28635 perpln2 28636 isperp 28637 lmif 28710 islmib 28712 isgrpo 30424 grpoinvfval 30449 grpodivfval 30461 isvcOLD 30506 isnv 30539 abrexexd 32436 acunirnmpt 32583 acunirnmpt2 32584 acunirnmpt2f 32585 fnpreimac 32595 locfinreflem 33817 esumrnmpt2 34045 sxsigon 34169 omssubadd 34278 carsgclctunlem2 34297 pmeasadd 34303 sitgclg 34320 bnj1366 34806 ptrest 37589 elghomlem1OLD 37855 elghomlem2OLD 37856 isrngod 37868 iscringd 37968 imaexALTV 38294 xrnresex 38370 dfcnvrefrels2 38492 dfcnvrefrels3 38493 sticksstones3 42107 lmhmlnmsplit 43058 rclexi 43586 rtrclexlem 43587 trclubgNEW 43589 cnvrcl0 43596 dfrtrcl5 43600 relexpmulg 43681 relexp01min 43684 relexpxpmin 43688 unirnmap 45180 unirnmapsn 45186 ssmapsn 45188 fourierdlem70 46153 fourierdlem71 46154 fourierdlem80 46163 meadjiunlem 46442 omeiunle 46494 fexafv2ex 47197 |
| Copyright terms: Public domain | W3C validator |