![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version |
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7775 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | uniexg 7775 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
3 | ssun2 4202 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
4 | dmrnssfld 5996 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
5 | 3, 4 | sstri 4018 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
6 | ssexg 5341 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
7 | 5, 6 | mpan 689 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 ∪ cuni 4931 dom cdm 5700 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: rnex 7950 imaexg 7953 rnexd 7955 xpexr 7958 xpexr2 7959 soex 7961 cnvexg 7964 coexg 7969 cofunexg 7989 funrnex 7994 abrexexgOLD 8002 tposexg 8281 iunon 8395 onoviun 8399 tz7.44lem1 8461 tz7.44-3 8464 fopwdom 9146 disjen 9200 domss2 9202 domssex 9204 hartogslem2 9612 ttrclexg 9792 djuexb 9978 dfac12lem2 10214 unirnfdomd 10636 hashimarn 14489 trclexlem 15043 relexp0g 15071 relexpsucnnr 15074 restval 17486 prdsbas 17517 prdsplusg 17518 prdsmulr 17519 prdsvsca 17520 prdshom 17527 sscpwex 17876 sylow1lem4 19643 sylow3lem2 19670 sylow3lem3 19671 lsmvalx 19681 txindislem 23662 xkoptsub 23683 fmfnfmlem3 23985 fmfnfmlem4 23986 ustuqtoplem 24269 ustuqtop0 24270 utopsnneiplem 24277 efabl 26610 efsubm 26611 addsuniflem 28052 ssltmul1 28191 ssltmul2 28192 precsexlem11 28259 perpln1 28736 perpln2 28737 isperp 28738 lmif 28811 islmib 28813 isgrpo 30529 grpoinvfval 30554 grpodivfval 30566 isvcOLD 30611 isnv 30644 abrexexd 32537 acunirnmpt 32677 acunirnmpt2 32678 acunirnmpt2f 32679 fnpreimac 32689 locfinreflem 33786 esumrnmpt2 34032 sxsigon 34156 omssubadd 34265 carsgclctunlem2 34284 pmeasadd 34290 sitgclg 34307 bnj1366 34805 ptrest 37579 elghomlem1OLD 37845 elghomlem2OLD 37846 isrngod 37858 iscringd 37958 imaexALTV 38286 xrnresex 38362 dfcnvrefrels2 38484 dfcnvrefrels3 38485 sticksstones3 42105 lmhmlnmsplit 43044 rclexi 43577 rtrclexlem 43578 trclubgNEW 43580 cnvrcl0 43587 dfrtrcl5 43591 relexpmulg 43672 relexp01min 43675 relexpxpmin 43679 unirnmap 45115 unirnmapsn 45121 ssmapsn 45123 fourierdlem70 46097 fourierdlem71 46098 fourierdlem80 46107 meadjiunlem 46386 omeiunle 46438 fexafv2ex 47135 |
Copyright terms: Public domain | W3C validator |