Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version |
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7587 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | uniexg 7587 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
3 | ssun2 4112 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
4 | dmrnssfld 5878 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
5 | 3, 4 | sstri 3935 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
6 | ssexg 5251 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
7 | 5, 6 | mpan 687 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3431 ∪ cun 3890 ⊆ wss 3892 ∪ cuni 4845 dom cdm 5590 ran crn 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-cnv 5598 df-dm 5600 df-rn 5601 |
This theorem is referenced by: rnex 7753 imaexg 7756 xpexr 7759 xpexr2 7760 soex 7762 cnvexg 7765 coexg 7770 cofunexg 7785 funrnex 7790 abrexexg 7797 tposexg 8047 iunon 8161 onoviun 8165 tz7.44lem1 8227 tz7.44-3 8230 fopwdom 8849 disjen 8903 domss2 8905 domssex 8907 hartogslem2 9280 ttrclexg 9459 djuexb 9668 dfac12lem2 9901 unirnfdomd 10324 focdmex 14063 hashimarn 14153 trclexlem 14703 relexp0g 14731 relexpsucnnr 14734 restval 17135 prdsbas 17166 prdsplusg 17167 prdsmulr 17168 prdsvsca 17169 prdshom 17176 sscpwex 17525 sylow1lem4 19204 sylow3lem2 19231 sylow3lem3 19232 lsmvalx 19242 txindislem 22782 xkoptsub 22803 fmfnfmlem3 23105 fmfnfmlem4 23106 ustuqtoplem 23389 ustuqtop0 23390 utopsnneiplem 23397 efabl 25704 efsubm 25705 perpln1 27069 perpln2 27070 isperp 27071 lmif 27144 islmib 27146 isgrpo 28855 grpoinvfval 28880 grpodivfval 28892 isvcOLD 28937 isnv 28970 abrexexd 30850 acunirnmpt 30992 acunirnmpt2 30993 acunirnmpt2f 30994 fnpreimac 31004 locfinreflem 31786 esumrnmpt2 32032 sxsigon 32156 omssubadd 32263 carsgclctunlem2 32282 pmeasadd 32288 sitgclg 32305 bnj1366 32805 ptrest 35772 elghomlem1OLD 36039 elghomlem2OLD 36040 isrngod 36052 iscringd 36152 imaexALTV 36461 xrnresex 36528 dfcnvrefrels2 36640 dfcnvrefrels3 36641 sticksstones3 40101 lmhmlnmsplit 40909 rclexi 41193 rtrclexlem 41194 trclubgNEW 41196 cnvrcl0 41203 dfrtrcl5 41207 relexpmulg 41288 relexp01min 41291 relexpxpmin 41295 unirnmap 42718 unirnmapsn 42724 ssmapsn 42726 fourierdlem70 43688 fourierdlem71 43689 fourierdlem80 43698 meadjiunlem 43974 omeiunle 44026 fexafv2ex 44680 |
Copyright terms: Public domain | W3C validator |