| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7719 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7719 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun2 4145 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5940 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3959 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5281 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 ∪ cuni 4874 dom cdm 5641 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: rnex 7889 imaexg 7892 rnexd 7894 xpexr 7897 xpexr2 7898 soex 7900 cnvexg 7903 coexg 7908 cofunexg 7930 funrnex 7935 abrexexgOLD 7943 tposexg 8222 iunon 8311 onoviun 8315 tz7.44lem1 8376 tz7.44-3 8379 fopwdom 9054 disjen 9104 domss2 9106 domssex 9108 hartogslem2 9503 ttrclexg 9683 djuexb 9869 dfac12lem2 10105 unirnfdomd 10527 hashimarn 14412 trclexlem 14967 relexp0g 14995 relexpsucnnr 14998 restval 17396 prdsbas 17427 prdsplusg 17428 prdsmulr 17429 prdsvsca 17430 prdshom 17437 sscpwex 17784 sylow1lem4 19538 sylow3lem2 19565 sylow3lem3 19566 lsmvalx 19576 txindislem 23527 xkoptsub 23548 fmfnfmlem3 23850 fmfnfmlem4 23851 ustuqtoplem 24134 ustuqtop0 24135 utopsnneiplem 24142 efabl 26466 efsubm 26467 addsuniflem 27915 ssltmul1 28057 ssltmul2 28058 precsexlem11 28126 perpln1 28644 perpln2 28645 isperp 28646 lmif 28719 islmib 28721 isgrpo 30433 grpoinvfval 30458 grpodivfval 30470 isvcOLD 30515 isnv 30548 abrexexd 32445 acunirnmpt 32590 acunirnmpt2 32591 acunirnmpt2f 32592 fnpreimac 32602 locfinreflem 33837 esumrnmpt2 34065 sxsigon 34189 omssubadd 34298 carsgclctunlem2 34317 pmeasadd 34323 sitgclg 34340 bnj1366 34826 ptrest 37620 elghomlem1OLD 37886 elghomlem2OLD 37887 isrngod 37899 iscringd 37999 xrnresex 38399 dfcnvrefrels2 38526 dfcnvrefrels3 38527 sticksstones3 42143 lmhmlnmsplit 43083 rclexi 43611 rtrclexlem 43612 trclubgNEW 43614 cnvrcl0 43621 dfrtrcl5 43625 relexpmulg 43706 relexp01min 43709 relexpxpmin 43713 unirnmap 45209 unirnmapsn 45215 ssmapsn 45217 fourierdlem70 46181 fourierdlem71 46182 fourierdlem80 46191 meadjiunlem 46470 omeiunle 46522 fexafv2ex 47225 |
| Copyright terms: Public domain | W3C validator |