| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnexg | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| rnexg | ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7696 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 7696 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun2 4138 | . . . 4 ⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 5926 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3953 | . . 3 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 5273 | . . 3 ⊢ ((ran 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → ran 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → ran 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 18 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 ⊆ wss 3911 ∪ cuni 4867 dom cdm 5631 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: rnex 7866 imaexg 7869 rnexd 7871 xpexr 7874 xpexr2 7875 soex 7877 cnvexg 7880 coexg 7885 cofunexg 7907 funrnex 7912 tposexg 8196 iunon 8285 onoviun 8289 tz7.44lem1 8350 tz7.44-3 8353 fopwdom 9026 disjen 9075 domss2 9077 domssex 9079 hartogslem2 9472 ttrclexg 9652 djuexb 9838 dfac12lem2 10074 unirnfdomd 10496 hashimarn 14381 trclexlem 14936 relexp0g 14964 relexpsucnnr 14967 restval 17365 prdsbas 17396 prdsplusg 17397 prdsmulr 17398 prdsvsca 17399 prdshom 17406 sscpwex 17753 sylow1lem4 19507 sylow3lem2 19534 sylow3lem3 19535 lsmvalx 19545 txindislem 23496 xkoptsub 23517 fmfnfmlem3 23819 fmfnfmlem4 23820 ustuqtoplem 24103 ustuqtop0 24104 utopsnneiplem 24111 efabl 26435 efsubm 26436 addsuniflem 27884 ssltmul1 28026 ssltmul2 28027 precsexlem11 28095 perpln1 28613 perpln2 28614 isperp 28615 lmif 28688 islmib 28690 isgrpo 30399 grpoinvfval 30424 grpodivfval 30436 isvcOLD 30481 isnv 30514 abrexexd 32411 acunirnmpt 32556 acunirnmpt2 32557 acunirnmpt2f 32558 fnpreimac 32568 locfinreflem 33803 esumrnmpt2 34031 sxsigon 34155 omssubadd 34264 carsgclctunlem2 34283 pmeasadd 34289 sitgclg 34306 bnj1366 34792 ptrest 37586 elghomlem1OLD 37852 elghomlem2OLD 37853 isrngod 37865 iscringd 37965 xrnresex 38365 dfcnvrefrels2 38492 dfcnvrefrels3 38493 sticksstones3 42109 lmhmlnmsplit 43049 rclexi 43577 rtrclexlem 43578 trclubgNEW 43580 cnvrcl0 43587 dfrtrcl5 43591 relexpmulg 43672 relexp01min 43675 relexpxpmin 43679 unirnmap 45175 unirnmapsn 45181 ssmapsn 45183 fourierdlem70 46147 fourierdlem71 46148 fourierdlem80 46157 meadjiunlem 46436 omeiunle 46488 fexafv2ex 47194 |
| Copyright terms: Public domain | W3C validator |