| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusrn | Structured version Visualization version GIF version | ||
| Description: The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| qusrn.b | ⊢ 𝐵 = (Base‘𝐺) |
| qusrn.e | ⊢ 𝑈 = (𝐵 / (𝐺 ~QG 𝑁)) |
| qusrn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) |
| qusrn.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| qusrn | ⊢ (𝜑 → ran 𝐹 = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrn.e | . . 3 ⊢ 𝑈 = (𝐵 / (𝐺 ~QG 𝑁)) | |
| 2 | qusrn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2730 | . . . 4 ⊢ (LSSum‘𝐺) = (LSSum‘𝐺) | |
| 4 | qusrn.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
| 5 | nsgsubg 19097 | . . . . . 6 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ (SubGrp‘𝐺)) |
| 8 | 2, 3, 7 | qusbas2 33384 | . . 3 ⊢ (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
| 9 | 1, 8 | eqtrid 2777 | . 2 ⊢ (𝜑 → 𝑈 = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
| 10 | qusrn.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) | |
| 11 | ovex 7423 | . . . . . . 7 ⊢ (𝐺 ~QG 𝑁) ∈ V | |
| 12 | ecexg 8678 | . . . . . . 7 ⊢ ((𝐺 ~QG 𝑁) ∈ V → [𝑥](𝐺 ~QG 𝑁) ∈ V) | |
| 13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝑁) ∈ V) |
| 14 | 10, 13 | dmmptd 6666 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐵) |
| 15 | 14 | imaeq2d 6034 | . . . 4 ⊢ (𝜑 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐵)) |
| 16 | eqid 2730 | . . . . 5 ⊢ (𝐺 /s (𝐺 ~QG 𝑁)) = (𝐺 /s (𝐺 ~QG 𝑁)) | |
| 17 | eqid 2730 | . . . . 5 ⊢ (ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁))) = (ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁))) | |
| 18 | subgrcl 19070 | . . . . . 6 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 19 | 2 | subgid 19067 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
| 20 | 4, 5, 18, 19 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘𝐺)) |
| 21 | ssidd 3973 | . . . . 5 ⊢ (𝜑 → (SubGrp‘𝐺) ⊆ (SubGrp‘𝐺)) | |
| 22 | 2, 16, 3, 17, 10, 4, 20, 21 | qusima 33386 | . . . 4 ⊢ (𝜑 → ((ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = (𝐹 “ 𝐵)) |
| 23 | mpteq1 5199 | . . . . . 6 ⊢ (ℎ = 𝐵 → (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) | |
| 24 | 23 | rneqd 5905 | . . . . 5 ⊢ (ℎ = 𝐵 → ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
| 25 | 20 | mptexd 7201 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V) |
| 26 | 25 | rnexd 7894 | . . . . 5 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V) |
| 27 | 17, 24, 20, 26 | fvmptd3 6994 | . . . 4 ⊢ (𝜑 → ((ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
| 28 | 15, 22, 27 | 3eqtr2rd 2772 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝐹 “ dom 𝐹)) |
| 29 | imadmrn 6044 | . . 3 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 30 | 28, 29 | eqtrdi 2781 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran 𝐹) |
| 31 | 9, 30 | eqtr2d 2766 | 1 ⊢ (𝜑 → ran 𝐹 = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 ↦ cmpt 5191 dom cdm 5641 ran crn 5642 “ cima 5644 ‘cfv 6514 (class class class)co 7390 [cec 8672 / cqs 8673 Basecbs 17186 /s cqus 17475 Grpcgrp 18872 SubGrpcsubg 19059 NrmSGrpcnsg 19060 ~QG cqg 19061 LSSumclsm 19571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-ec 8676 df-qs 8680 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-subg 19062 df-nsg 19063 df-eqg 19064 df-oppg 19285 df-lsm 19573 |
| This theorem is referenced by: algextdeglem4 33717 |
| Copyright terms: Public domain | W3C validator |