Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusrn Structured version   Visualization version   GIF version

Theorem qusrn 33369
Description: The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
qusrn.b 𝐵 = (Base‘𝐺)
qusrn.e 𝑈 = (𝐵 / (𝐺 ~QG 𝑁))
qusrn.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
qusrn.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
qusrn (𝜑 → ran 𝐹 = 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem qusrn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 qusrn.e . . 3 𝑈 = (𝐵 / (𝐺 ~QG 𝑁))
2 qusrn.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2731 . . . 4 (LSSum‘𝐺) = (LSSum‘𝐺)
4 qusrn.n . . . . . 6 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
5 nsgsubg 19068 . . . . . 6 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
64, 5syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
76adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝑁 ∈ (SubGrp‘𝐺))
82, 3, 7qusbas2 33366 . . 3 (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
91, 8eqtrid 2778 . 2 (𝜑𝑈 = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
10 qusrn.f . . . . . 6 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
11 ovex 7379 . . . . . . 7 (𝐺 ~QG 𝑁) ∈ V
12 ecexg 8626 . . . . . . 7 ((𝐺 ~QG 𝑁) ∈ V → [𝑥](𝐺 ~QG 𝑁) ∈ V)
1311, 12mp1i 13 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝑁) ∈ V)
1410, 13dmmptd 6626 . . . . 5 (𝜑 → dom 𝐹 = 𝐵)
1514imaeq2d 6009 . . . 4 (𝜑 → (𝐹 “ dom 𝐹) = (𝐹𝐵))
16 eqid 2731 . . . . 5 (𝐺 /s (𝐺 ~QG 𝑁)) = (𝐺 /s (𝐺 ~QG 𝑁))
17 eqid 2731 . . . . 5 ( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) = ( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
18 subgrcl 19041 . . . . . 6 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
192subgid 19038 . . . . . 6 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
204, 5, 18, 194syl 19 . . . . 5 (𝜑𝐵 ∈ (SubGrp‘𝐺))
21 ssidd 3958 . . . . 5 (𝜑 → (SubGrp‘𝐺) ⊆ (SubGrp‘𝐺))
222, 16, 3, 17, 10, 4, 20, 21qusima 33368 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = (𝐹𝐵))
23 mpteq1 5180 . . . . . 6 ( = 𝐵 → (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2423rneqd 5878 . . . . 5 ( = 𝐵 → ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2520mptexd 7158 . . . . . 6 (𝜑 → (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V)
2625rnexd 7845 . . . . 5 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V)
2717, 24, 20, 26fvmptd3 6952 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2815, 22, 273eqtr2rd 2773 . . 3 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝐹 “ dom 𝐹))
29 imadmrn 6019 . . 3 (𝐹 “ dom 𝐹) = ran 𝐹
3028, 29eqtrdi 2782 . 2 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran 𝐹)
319, 30eqtr2d 2767 1 (𝜑 → ran 𝐹 = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4576  cmpt 5172  dom cdm 5616  ran crn 5617  cima 5619  cfv 6481  (class class class)co 7346  [cec 8620   / cqs 8621  Basecbs 17117   /s cqus 17406  Grpcgrp 18843  SubGrpcsubg 19030  NrmSGrpcnsg 19031   ~QG cqg 19032  LSSumclsm 19544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-ec 8624  df-qs 8628  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-subg 19033  df-nsg 19034  df-eqg 19035  df-oppg 19256  df-lsm 19546
This theorem is referenced by:  algextdeglem4  33728
  Copyright terms: Public domain W3C validator