Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusrn Structured version   Visualization version   GIF version

Theorem qusrn 33015
Description: The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
qusrn.b 𝐵 = (Base‘𝐺)
qusrn.e 𝑈 = (𝐵 / (𝐺 ~QG 𝑁))
qusrn.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
qusrn.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
qusrn (𝜑 → ran 𝐹 = 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem qusrn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 qusrn.e . . 3 𝑈 = (𝐵 / (𝐺 ~QG 𝑁))
2 qusrn.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2724 . . . 4 (LSSum‘𝐺) = (LSSum‘𝐺)
4 qusrn.n . . . . . 6 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
5 nsgsubg 19081 . . . . . 6 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
64, 5syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
76adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝑁 ∈ (SubGrp‘𝐺))
82, 3, 7qusbas2 33012 . . 3 (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
91, 8eqtrid 2776 . 2 (𝜑𝑈 = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
10 qusrn.f . . . . . 6 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
11 ovex 7435 . . . . . . 7 (𝐺 ~QG 𝑁) ∈ V
12 ecexg 8704 . . . . . . 7 ((𝐺 ~QG 𝑁) ∈ V → [𝑥](𝐺 ~QG 𝑁) ∈ V)
1311, 12mp1i 13 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝑁) ∈ V)
1410, 13dmmptd 6686 . . . . 5 (𝜑 → dom 𝐹 = 𝐵)
1514imaeq2d 6050 . . . 4 (𝜑 → (𝐹 “ dom 𝐹) = (𝐹𝐵))
16 eqid 2724 . . . . 5 (𝐺 /s (𝐺 ~QG 𝑁)) = (𝐺 /s (𝐺 ~QG 𝑁))
17 eqid 2724 . . . . 5 ( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) = ( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
18 subgrcl 19054 . . . . . 6 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
192subgid 19051 . . . . . 6 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
204, 5, 18, 194syl 19 . . . . 5 (𝜑𝐵 ∈ (SubGrp‘𝐺))
21 ssidd 3998 . . . . 5 (𝜑 → (SubGrp‘𝐺) ⊆ (SubGrp‘𝐺))
222, 16, 3, 17, 10, 4, 20, 21qusima 33014 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = (𝐹𝐵))
23 mpteq1 5232 . . . . . 6 ( = 𝐵 → (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2423rneqd 5928 . . . . 5 ( = 𝐵 → ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2520mptexd 7218 . . . . . 6 (𝜑 → (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V)
2625rnexd 32397 . . . . 5 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V)
2717, 24, 20, 26fvmptd3 7012 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2815, 22, 273eqtr2rd 2771 . . 3 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝐹 “ dom 𝐹))
29 imadmrn 6060 . . 3 (𝐹 “ dom 𝐹) = ran 𝐹
3028, 29eqtrdi 2780 . 2 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran 𝐹)
319, 30eqtr2d 2765 1 (𝜑 → ran 𝐹 = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  {csn 4621  cmpt 5222  dom cdm 5667  ran crn 5668  cima 5670  cfv 6534  (class class class)co 7402  [cec 8698   / cqs 8699  Basecbs 17149   /s cqus 17456  Grpcgrp 18859  SubGrpcsubg 19043  NrmSGrpcnsg 19044   ~QG cqg 19045  LSSumclsm 19550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-ec 8702  df-qs 8706  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-0g 17392  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-grp 18862  df-minusg 18863  df-subg 19046  df-nsg 19047  df-eqg 19048  df-oppg 19258  df-lsm 19552
This theorem is referenced by:  algextdeglem4  33286
  Copyright terms: Public domain W3C validator