![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusrn | Structured version Visualization version GIF version |
Description: The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
qusrn.b | ⊢ 𝐵 = (Base‘𝐺) |
qusrn.e | ⊢ 𝑈 = (𝐵 / (𝐺 ~QG 𝑁)) |
qusrn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) |
qusrn.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
Ref | Expression |
---|---|
qusrn | ⊢ (𝜑 → ran 𝐹 = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusrn.e | . . 3 ⊢ 𝑈 = (𝐵 / (𝐺 ~QG 𝑁)) | |
2 | qusrn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2728 | . . . 4 ⊢ (LSSum‘𝐺) = (LSSum‘𝐺) | |
4 | qusrn.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
5 | nsgsubg 19112 | . . . . . 6 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ (SubGrp‘𝐺)) |
8 | 2, 3, 7 | qusbas2 33116 | . . 3 ⊢ (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
9 | 1, 8 | eqtrid 2780 | . 2 ⊢ (𝜑 → 𝑈 = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
10 | qusrn.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) | |
11 | ovex 7453 | . . . . . . 7 ⊢ (𝐺 ~QG 𝑁) ∈ V | |
12 | ecexg 8728 | . . . . . . 7 ⊢ ((𝐺 ~QG 𝑁) ∈ V → [𝑥](𝐺 ~QG 𝑁) ∈ V) | |
13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝑁) ∈ V) |
14 | 10, 13 | dmmptd 6700 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐵) |
15 | 14 | imaeq2d 6063 | . . . 4 ⊢ (𝜑 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐵)) |
16 | eqid 2728 | . . . . 5 ⊢ (𝐺 /s (𝐺 ~QG 𝑁)) = (𝐺 /s (𝐺 ~QG 𝑁)) | |
17 | eqid 2728 | . . . . 5 ⊢ (ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁))) = (ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁))) | |
18 | subgrcl 19085 | . . . . . 6 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
19 | 2 | subgid 19082 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
20 | 4, 5, 18, 19 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘𝐺)) |
21 | ssidd 4003 | . . . . 5 ⊢ (𝜑 → (SubGrp‘𝐺) ⊆ (SubGrp‘𝐺)) | |
22 | 2, 16, 3, 17, 10, 4, 20, 21 | qusima 33118 | . . . 4 ⊢ (𝜑 → ((ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = (𝐹 “ 𝐵)) |
23 | mpteq1 5241 | . . . . . 6 ⊢ (ℎ = 𝐵 → (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) | |
24 | 23 | rneqd 5940 | . . . . 5 ⊢ (ℎ = 𝐵 → ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
25 | 20 | mptexd 7236 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V) |
26 | 25 | rnexd 7923 | . . . . 5 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V) |
27 | 17, 24, 20, 26 | fvmptd3 7028 | . . . 4 ⊢ (𝜑 → ((ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
28 | 15, 22, 27 | 3eqtr2rd 2775 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝐹 “ dom 𝐹)) |
29 | imadmrn 6073 | . . 3 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
30 | 28, 29 | eqtrdi 2784 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran 𝐹) |
31 | 9, 30 | eqtr2d 2769 | 1 ⊢ (𝜑 → ran 𝐹 = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 {csn 4629 ↦ cmpt 5231 dom cdm 5678 ran crn 5679 “ cima 5681 ‘cfv 6548 (class class class)co 7420 [cec 8722 / cqs 8723 Basecbs 17179 /s cqus 17486 Grpcgrp 18889 SubGrpcsubg 19074 NrmSGrpcnsg 19075 ~QG cqg 19076 LSSumclsm 19588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8231 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-ec 8726 df-qs 8730 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-minusg 18893 df-subg 19077 df-nsg 19078 df-eqg 19079 df-oppg 19296 df-lsm 19590 |
This theorem is referenced by: algextdeglem4 33388 |
Copyright terms: Public domain | W3C validator |