Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusrn Structured version   Visualization version   GIF version

Theorem qusrn 33356
Description: The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
qusrn.b 𝐵 = (Base‘𝐺)
qusrn.e 𝑈 = (𝐵 / (𝐺 ~QG 𝑁))
qusrn.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
qusrn.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
qusrn (𝜑 → ran 𝐹 = 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem qusrn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 qusrn.e . . 3 𝑈 = (𝐵 / (𝐺 ~QG 𝑁))
2 qusrn.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2729 . . . 4 (LSSum‘𝐺) = (LSSum‘𝐺)
4 qusrn.n . . . . . 6 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
5 nsgsubg 19055 . . . . . 6 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
64, 5syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
76adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝑁 ∈ (SubGrp‘𝐺))
82, 3, 7qusbas2 33353 . . 3 (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
91, 8eqtrid 2776 . 2 (𝜑𝑈 = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
10 qusrn.f . . . . . 6 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
11 ovex 7386 . . . . . . 7 (𝐺 ~QG 𝑁) ∈ V
12 ecexg 8636 . . . . . . 7 ((𝐺 ~QG 𝑁) ∈ V → [𝑥](𝐺 ~QG 𝑁) ∈ V)
1311, 12mp1i 13 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝑁) ∈ V)
1410, 13dmmptd 6631 . . . . 5 (𝜑 → dom 𝐹 = 𝐵)
1514imaeq2d 6015 . . . 4 (𝜑 → (𝐹 “ dom 𝐹) = (𝐹𝐵))
16 eqid 2729 . . . . 5 (𝐺 /s (𝐺 ~QG 𝑁)) = (𝐺 /s (𝐺 ~QG 𝑁))
17 eqid 2729 . . . . 5 ( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) = ( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
18 subgrcl 19028 . . . . . 6 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
192subgid 19025 . . . . . 6 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
204, 5, 18, 194syl 19 . . . . 5 (𝜑𝐵 ∈ (SubGrp‘𝐺))
21 ssidd 3961 . . . . 5 (𝜑 → (SubGrp‘𝐺) ⊆ (SubGrp‘𝐺))
222, 16, 3, 17, 10, 4, 20, 21qusima 33355 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = (𝐹𝐵))
23 mpteq1 5184 . . . . . 6 ( = 𝐵 → (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2423rneqd 5884 . . . . 5 ( = 𝐵 → ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2520mptexd 7164 . . . . . 6 (𝜑 → (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V)
2625rnexd 7855 . . . . 5 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V)
2717, 24, 20, 26fvmptd3 6957 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2815, 22, 273eqtr2rd 2771 . . 3 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝐹 “ dom 𝐹))
29 imadmrn 6025 . . 3 (𝐹 “ dom 𝐹) = ran 𝐹
3028, 29eqtrdi 2780 . 2 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran 𝐹)
319, 30eqtr2d 2765 1 (𝜑 → ran 𝐹 = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cmpt 5176  dom cdm 5623  ran crn 5624  cima 5626  cfv 6486  (class class class)co 7353  [cec 8630   / cqs 8631  Basecbs 17138   /s cqus 17427  Grpcgrp 18830  SubGrpcsubg 19017  NrmSGrpcnsg 19018   ~QG cqg 19019  LSSumclsm 19531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-ec 8634  df-qs 8638  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-subg 19020  df-nsg 19021  df-eqg 19022  df-oppg 19243  df-lsm 19533
This theorem is referenced by:  algextdeglem4  33686
  Copyright terms: Public domain W3C validator