Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusrn Structured version   Visualization version   GIF version

Theorem qusrn 33438
Description: The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
qusrn.b 𝐵 = (Base‘𝐺)
qusrn.e 𝑈 = (𝐵 / (𝐺 ~QG 𝑁))
qusrn.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
qusrn.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
qusrn (𝜑 → ran 𝐹 = 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem qusrn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 qusrn.e . . 3 𝑈 = (𝐵 / (𝐺 ~QG 𝑁))
2 qusrn.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2736 . . . 4 (LSSum‘𝐺) = (LSSum‘𝐺)
4 qusrn.n . . . . . 6 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
5 nsgsubg 19177 . . . . . 6 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
64, 5syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
76adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝑁 ∈ (SubGrp‘𝐺))
82, 3, 7qusbas2 33435 . . 3 (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
91, 8eqtrid 2788 . 2 (𝜑𝑈 = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
10 qusrn.f . . . . . 6 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
11 ovex 7465 . . . . . . 7 (𝐺 ~QG 𝑁) ∈ V
12 ecexg 8750 . . . . . . 7 ((𝐺 ~QG 𝑁) ∈ V → [𝑥](𝐺 ~QG 𝑁) ∈ V)
1311, 12mp1i 13 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝑁) ∈ V)
1410, 13dmmptd 6712 . . . . 5 (𝜑 → dom 𝐹 = 𝐵)
1514imaeq2d 6077 . . . 4 (𝜑 → (𝐹 “ dom 𝐹) = (𝐹𝐵))
16 eqid 2736 . . . . 5 (𝐺 /s (𝐺 ~QG 𝑁)) = (𝐺 /s (𝐺 ~QG 𝑁))
17 eqid 2736 . . . . 5 ( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) = ( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
18 subgrcl 19150 . . . . . 6 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
192subgid 19147 . . . . . 6 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
204, 5, 18, 194syl 19 . . . . 5 (𝜑𝐵 ∈ (SubGrp‘𝐺))
21 ssidd 4006 . . . . 5 (𝜑 → (SubGrp‘𝐺) ⊆ (SubGrp‘𝐺))
222, 16, 3, 17, 10, 4, 20, 21qusima 33437 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = (𝐹𝐵))
23 mpteq1 5234 . . . . . 6 ( = 𝐵 → (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2423rneqd 5948 . . . . 5 ( = 𝐵 → ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2520mptexd 7245 . . . . . 6 (𝜑 → (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V)
2625rnexd 7938 . . . . 5 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V)
2717, 24, 20, 26fvmptd3 7038 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2815, 22, 273eqtr2rd 2783 . . 3 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝐹 “ dom 𝐹))
29 imadmrn 6087 . . 3 (𝐹 “ dom 𝐹) = ran 𝐹
3028, 29eqtrdi 2792 . 2 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran 𝐹)
319, 30eqtr2d 2777 1 (𝜑 → ran 𝐹 = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  {csn 4625  cmpt 5224  dom cdm 5684  ran crn 5685  cima 5687  cfv 6560  (class class class)co 7432  [cec 8744   / cqs 8745  Basecbs 17248   /s cqus 17551  Grpcgrp 18952  SubGrpcsubg 19139  NrmSGrpcnsg 19140   ~QG cqg 19141  LSSumclsm 19653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-ec 8748  df-qs 8752  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-subg 19142  df-nsg 19143  df-eqg 19144  df-oppg 19365  df-lsm 19655
This theorem is referenced by:  algextdeglem4  33762
  Copyright terms: Public domain W3C validator