Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusrn Structured version   Visualization version   GIF version

Theorem qusrn 32515
Description: The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
qusrn.b 𝐵 = (Base‘𝐺)
qusrn.e 𝑈 = (𝐵 / (𝐺 ~QG 𝑁))
qusrn.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
qusrn.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
qusrn (𝜑 → ran 𝐹 = 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem qusrn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 qusrn.e . . 3 𝑈 = (𝐵 / (𝐺 ~QG 𝑁))
2 qusrn.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2732 . . . 4 (LSSum‘𝐺) = (LSSum‘𝐺)
4 qusrn.n . . . . . 6 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
5 nsgsubg 19037 . . . . . 6 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
64, 5syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
76adantr 481 . . . 4 ((𝜑𝑥𝐵) → 𝑁 ∈ (SubGrp‘𝐺))
82, 3, 7qusbas2 32512 . . 3 (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
91, 8eqtrid 2784 . 2 (𝜑𝑈 = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
10 qusrn.f . . . . . 6 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
11 ovex 7441 . . . . . . 7 (𝐺 ~QG 𝑁) ∈ V
12 ecexg 8706 . . . . . . 7 ((𝐺 ~QG 𝑁) ∈ V → [𝑥](𝐺 ~QG 𝑁) ∈ V)
1311, 12mp1i 13 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝑁) ∈ V)
1410, 13dmmptd 6695 . . . . 5 (𝜑 → dom 𝐹 = 𝐵)
1514imaeq2d 6059 . . . 4 (𝜑 → (𝐹 “ dom 𝐹) = (𝐹𝐵))
16 eqid 2732 . . . . 5 (𝐺 /s (𝐺 ~QG 𝑁)) = (𝐺 /s (𝐺 ~QG 𝑁))
17 eqid 2732 . . . . 5 ( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) = ( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
18 subgrcl 19010 . . . . . 6 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
192subgid 19007 . . . . . 6 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
204, 5, 18, 194syl 19 . . . . 5 (𝜑𝐵 ∈ (SubGrp‘𝐺))
21 ssidd 4005 . . . . 5 (𝜑 → (SubGrp‘𝐺) ⊆ (SubGrp‘𝐺))
222, 16, 3, 17, 10, 4, 20, 21qusima 32514 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = (𝐹𝐵))
23 mpteq1 5241 . . . . . 6 ( = 𝐵 → (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2423rneqd 5937 . . . . 5 ( = 𝐵 → ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2520mptexd 7225 . . . . . 6 (𝜑 → (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V)
2625rnexd 31898 . . . . 5 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V)
2717, 24, 20, 26fvmptd3 7021 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)))
2815, 22, 273eqtr2rd 2779 . . 3 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝐹 “ dom 𝐹))
29 imadmrn 6069 . . 3 (𝐹 “ dom 𝐹) = ran 𝐹
3028, 29eqtrdi 2788 . 2 (𝜑 → ran (𝑥𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran 𝐹)
319, 30eqtr2d 2773 1 (𝜑 → ran 𝐹 = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  {csn 4628  cmpt 5231  dom cdm 5676  ran crn 5677  cima 5679  cfv 6543  (class class class)co 7408  [cec 8700   / cqs 8701  Basecbs 17143   /s cqus 17450  Grpcgrp 18818  SubGrpcsubg 18999  NrmSGrpcnsg 19000   ~QG cqg 19001  LSSumclsm 19501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-tpos 8210  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-ec 8704  df-qs 8708  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-minusg 18822  df-subg 19002  df-nsg 19003  df-eqg 19004  df-oppg 19209  df-lsm 19503
This theorem is referenced by:  algextdeglem1  32767
  Copyright terms: Public domain W3C validator