| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusrn | Structured version Visualization version GIF version | ||
| Description: The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| qusrn.b | ⊢ 𝐵 = (Base‘𝐺) |
| qusrn.e | ⊢ 𝑈 = (𝐵 / (𝐺 ~QG 𝑁)) |
| qusrn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) |
| qusrn.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| qusrn | ⊢ (𝜑 → ran 𝐹 = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrn.e | . . 3 ⊢ 𝑈 = (𝐵 / (𝐺 ~QG 𝑁)) | |
| 2 | qusrn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2733 | . . . 4 ⊢ (LSSum‘𝐺) = (LSSum‘𝐺) | |
| 4 | qusrn.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
| 5 | nsgsubg 19072 | . . . . . 6 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ (SubGrp‘𝐺)) |
| 8 | 2, 3, 7 | qusbas2 33378 | . . 3 ⊢ (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
| 9 | 1, 8 | eqtrid 2780 | . 2 ⊢ (𝜑 → 𝑈 = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
| 10 | qusrn.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) | |
| 11 | ovex 7385 | . . . . . . 7 ⊢ (𝐺 ~QG 𝑁) ∈ V | |
| 12 | ecexg 8632 | . . . . . . 7 ⊢ ((𝐺 ~QG 𝑁) ∈ V → [𝑥](𝐺 ~QG 𝑁) ∈ V) | |
| 13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝑁) ∈ V) |
| 14 | 10, 13 | dmmptd 6631 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐵) |
| 15 | 14 | imaeq2d 6013 | . . . 4 ⊢ (𝜑 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐵)) |
| 16 | eqid 2733 | . . . . 5 ⊢ (𝐺 /s (𝐺 ~QG 𝑁)) = (𝐺 /s (𝐺 ~QG 𝑁)) | |
| 17 | eqid 2733 | . . . . 5 ⊢ (ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁))) = (ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁))) | |
| 18 | subgrcl 19046 | . . . . . 6 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 19 | 2 | subgid 19043 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
| 20 | 4, 5, 18, 19 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘𝐺)) |
| 21 | ssidd 3954 | . . . . 5 ⊢ (𝜑 → (SubGrp‘𝐺) ⊆ (SubGrp‘𝐺)) | |
| 22 | 2, 16, 3, 17, 10, 4, 20, 21 | qusima 33380 | . . . 4 ⊢ (𝜑 → ((ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = (𝐹 “ 𝐵)) |
| 23 | mpteq1 5182 | . . . . . 6 ⊢ (ℎ = 𝐵 → (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) | |
| 24 | 23 | rneqd 5882 | . . . . 5 ⊢ (ℎ = 𝐵 → ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
| 25 | 20 | mptexd 7164 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V) |
| 26 | 25 | rnexd 7851 | . . . . 5 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V) |
| 27 | 17, 24, 20, 26 | fvmptd3 6958 | . . . 4 ⊢ (𝜑 → ((ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
| 28 | 15, 22, 27 | 3eqtr2rd 2775 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝐹 “ dom 𝐹)) |
| 29 | imadmrn 6023 | . . 3 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 30 | 28, 29 | eqtrdi 2784 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran 𝐹) |
| 31 | 9, 30 | eqtr2d 2769 | 1 ⊢ (𝜑 → ran 𝐹 = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 ↦ cmpt 5174 dom cdm 5619 ran crn 5620 “ cima 5622 ‘cfv 6486 (class class class)co 7352 [cec 8626 / cqs 8627 Basecbs 17122 /s cqus 17411 Grpcgrp 18848 SubGrpcsubg 19035 NrmSGrpcnsg 19036 ~QG cqg 19037 LSSumclsm 19548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-ec 8630 df-qs 8634 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-subg 19038 df-nsg 19039 df-eqg 19040 df-oppg 19260 df-lsm 19550 |
| This theorem is referenced by: algextdeglem4 33754 |
| Copyright terms: Public domain | W3C validator |