![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusrn | Structured version Visualization version GIF version |
Description: The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
qusrn.b | ⊢ 𝐵 = (Base‘𝐺) |
qusrn.e | ⊢ 𝑈 = (𝐵 / (𝐺 ~QG 𝑁)) |
qusrn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) |
qusrn.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
Ref | Expression |
---|---|
qusrn | ⊢ (𝜑 → ran 𝐹 = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusrn.e | . . 3 ⊢ 𝑈 = (𝐵 / (𝐺 ~QG 𝑁)) | |
2 | qusrn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2732 | . . . 4 ⊢ (LSSum‘𝐺) = (LSSum‘𝐺) | |
4 | qusrn.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
5 | nsgsubg 19037 | . . . . . 6 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ (SubGrp‘𝐺)) |
8 | 2, 3, 7 | qusbas2 32512 | . . 3 ⊢ (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
9 | 1, 8 | eqtrid 2784 | . 2 ⊢ (𝜑 → 𝑈 = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
10 | qusrn.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) | |
11 | ovex 7441 | . . . . . . 7 ⊢ (𝐺 ~QG 𝑁) ∈ V | |
12 | ecexg 8706 | . . . . . . 7 ⊢ ((𝐺 ~QG 𝑁) ∈ V → [𝑥](𝐺 ~QG 𝑁) ∈ V) | |
13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝑁) ∈ V) |
14 | 10, 13 | dmmptd 6695 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐵) |
15 | 14 | imaeq2d 6059 | . . . 4 ⊢ (𝜑 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐵)) |
16 | eqid 2732 | . . . . 5 ⊢ (𝐺 /s (𝐺 ~QG 𝑁)) = (𝐺 /s (𝐺 ~QG 𝑁)) | |
17 | eqid 2732 | . . . . 5 ⊢ (ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁))) = (ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁))) | |
18 | subgrcl 19010 | . . . . . 6 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
19 | 2 | subgid 19007 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
20 | 4, 5, 18, 19 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘𝐺)) |
21 | ssidd 4005 | . . . . 5 ⊢ (𝜑 → (SubGrp‘𝐺) ⊆ (SubGrp‘𝐺)) | |
22 | 2, 16, 3, 17, 10, 4, 20, 21 | qusima 32514 | . . . 4 ⊢ (𝜑 → ((ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = (𝐹 “ 𝐵)) |
23 | mpteq1 5241 | . . . . . 6 ⊢ (ℎ = 𝐵 → (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) | |
24 | 23 | rneqd 5937 | . . . . 5 ⊢ (ℎ = 𝐵 → ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
25 | 20 | mptexd 7225 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V) |
26 | 25 | rnexd 31898 | . . . . 5 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V) |
27 | 17, 24, 20, 26 | fvmptd3 7021 | . . . 4 ⊢ (𝜑 → ((ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
28 | 15, 22, 27 | 3eqtr2rd 2779 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝐹 “ dom 𝐹)) |
29 | imadmrn 6069 | . . 3 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
30 | 28, 29 | eqtrdi 2788 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran 𝐹) |
31 | 9, 30 | eqtr2d 2773 | 1 ⊢ (𝜑 → ran 𝐹 = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4628 ↦ cmpt 5231 dom cdm 5676 ran crn 5677 “ cima 5679 ‘cfv 6543 (class class class)co 7408 [cec 8700 / cqs 8701 Basecbs 17143 /s cqus 17450 Grpcgrp 18818 SubGrpcsubg 18999 NrmSGrpcnsg 19000 ~QG cqg 19001 LSSumclsm 19501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-ec 8704 df-qs 8708 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-subg 19002 df-nsg 19003 df-eqg 19004 df-oppg 19209 df-lsm 19503 |
This theorem is referenced by: algextdeglem1 32767 |
Copyright terms: Public domain | W3C validator |