| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusrn | Structured version Visualization version GIF version | ||
| Description: The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| qusrn.b | ⊢ 𝐵 = (Base‘𝐺) |
| qusrn.e | ⊢ 𝑈 = (𝐵 / (𝐺 ~QG 𝑁)) |
| qusrn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) |
| qusrn.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| qusrn | ⊢ (𝜑 → ran 𝐹 = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrn.e | . . 3 ⊢ 𝑈 = (𝐵 / (𝐺 ~QG 𝑁)) | |
| 2 | qusrn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2731 | . . . 4 ⊢ (LSSum‘𝐺) = (LSSum‘𝐺) | |
| 4 | qusrn.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
| 5 | nsgsubg 19068 | . . . . . 6 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ (SubGrp‘𝐺)) |
| 8 | 2, 3, 7 | qusbas2 33366 | . . 3 ⊢ (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
| 9 | 1, 8 | eqtrid 2778 | . 2 ⊢ (𝜑 → 𝑈 = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
| 10 | qusrn.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) | |
| 11 | ovex 7379 | . . . . . . 7 ⊢ (𝐺 ~QG 𝑁) ∈ V | |
| 12 | ecexg 8626 | . . . . . . 7 ⊢ ((𝐺 ~QG 𝑁) ∈ V → [𝑥](𝐺 ~QG 𝑁) ∈ V) | |
| 13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝑁) ∈ V) |
| 14 | 10, 13 | dmmptd 6626 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐵) |
| 15 | 14 | imaeq2d 6009 | . . . 4 ⊢ (𝜑 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐵)) |
| 16 | eqid 2731 | . . . . 5 ⊢ (𝐺 /s (𝐺 ~QG 𝑁)) = (𝐺 /s (𝐺 ~QG 𝑁)) | |
| 17 | eqid 2731 | . . . . 5 ⊢ (ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁))) = (ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁))) | |
| 18 | subgrcl 19041 | . . . . . 6 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 19 | 2 | subgid 19038 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
| 20 | 4, 5, 18, 19 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘𝐺)) |
| 21 | ssidd 3958 | . . . . 5 ⊢ (𝜑 → (SubGrp‘𝐺) ⊆ (SubGrp‘𝐺)) | |
| 22 | 2, 16, 3, 17, 10, 4, 20, 21 | qusima 33368 | . . . 4 ⊢ (𝜑 → ((ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = (𝐹 “ 𝐵)) |
| 23 | mpteq1 5180 | . . . . . 6 ⊢ (ℎ = 𝐵 → (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) | |
| 24 | 23 | rneqd 5878 | . . . . 5 ⊢ (ℎ = 𝐵 → ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
| 25 | 20 | mptexd 7158 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V) |
| 26 | 25 | rnexd 7845 | . . . . 5 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) ∈ V) |
| 27 | 17, 24, 20, 26 | fvmptd3 6952 | . . . 4 ⊢ (𝜑 → ((ℎ ∈ (SubGrp‘𝐺) ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} (LSSum‘𝐺)𝑁)))‘𝐵) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁))) |
| 28 | 15, 22, 27 | 3eqtr2rd 2773 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = (𝐹 “ dom 𝐹)) |
| 29 | imadmrn 6019 | . . 3 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 30 | 28, 29 | eqtrdi 2782 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ ({𝑥} (LSSum‘𝐺)𝑁)) = ran 𝐹) |
| 31 | 9, 30 | eqtr2d 2767 | 1 ⊢ (𝜑 → ran 𝐹 = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 ↦ cmpt 5172 dom cdm 5616 ran crn 5617 “ cima 5619 ‘cfv 6481 (class class class)co 7346 [cec 8620 / cqs 8621 Basecbs 17117 /s cqus 17406 Grpcgrp 18843 SubGrpcsubg 19030 NrmSGrpcnsg 19031 ~QG cqg 19032 LSSumclsm 19544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-ec 8624 df-qs 8628 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-subg 19033 df-nsg 19034 df-eqg 19035 df-oppg 19256 df-lsm 19546 |
| This theorem is referenced by: algextdeglem4 33728 |
| Copyright terms: Public domain | W3C validator |