![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnnonrel | Structured version Visualization version GIF version |
Description: The range of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
rnnonrel | ⊢ ran (𝐴 ∖ ◡◡𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmnonrel 43194 | . 2 ⊢ dom (𝐴 ∖ ◡◡𝐴) = ∅ | |
2 | dm0rn0 5930 | . 2 ⊢ (dom (𝐴 ∖ ◡◡𝐴) = ∅ ↔ ran (𝐴 ∖ ◡◡𝐴) = ∅) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ran (𝐴 ∖ ◡◡𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∖ cdif 3943 ∅c0 4324 ◡ccnv 5680 dom cdm 5681 ran crn 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5687 df-rel 5688 df-cnv 5689 df-dm 5691 df-rn 5692 |
This theorem is referenced by: fvnonrel 43201 |
Copyright terms: Public domain | W3C validator |