Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnnonrel Structured version   Visualization version   GIF version

Theorem rnnonrel 43195
Description: The range of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
rnnonrel ran (𝐴𝐴) = ∅

Proof of Theorem rnnonrel
StepHypRef Expression
1 dmnonrel 43194 . 2 dom (𝐴𝐴) = ∅
2 dm0rn0 5930 . 2 (dom (𝐴𝐴) = ∅ ↔ ran (𝐴𝐴) = ∅)
31, 2mpbi 229 1 ran (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cdif 3943  c0 4324  ccnv 5680  dom cdm 5681  ran crn 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pr 5432
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5687  df-rel 5688  df-cnv 5689  df-dm 5691  df-rn 5692
This theorem is referenced by:  fvnonrel  43201
  Copyright terms: Public domain W3C validator