Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmnonrel Structured version   Visualization version   GIF version

Theorem dmnonrel 40784
Description: The domain of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
dmnonrel dom (𝐴𝐴) = ∅

Proof of Theorem dmnonrel
StepHypRef Expression
1 dfdm4 5748 . 2 dom (𝐴𝐴) = ran (𝐴𝐴)
2 cnvnonrel 40782 . . 3 (𝐴𝐴) = ∅
32rneqi 5790 . 2 ran (𝐴𝐴) = ran ∅
4 rn0 5779 . 2 ran ∅ = ∅
51, 3, 43eqtri 2766 1 dom (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cdif 3850  c0 4221  ccnv 5534  dom cdm 5535  ran crn 5536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-rab 3063  df-v 3402  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-br 5041  df-opab 5103  df-xp 5541  df-rel 5542  df-cnv 5543  df-dm 5545  df-rn 5546
This theorem is referenced by:  rnnonrel  40785
  Copyright terms: Public domain W3C validator