Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmnonrel Structured version   Visualization version   GIF version

Theorem dmnonrel 42899
Description: The domain of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
dmnonrel dom (𝐴𝐴) = ∅

Proof of Theorem dmnonrel
StepHypRef Expression
1 dfdm4 5888 . 2 dom (𝐴𝐴) = ran (𝐴𝐴)
2 cnvnonrel 42897 . . 3 (𝐴𝐴) = ∅
32rneqi 5929 . 2 ran (𝐴𝐴) = ran ∅
4 rn0 5918 . 2 ran ∅ = ∅
51, 3, 43eqtri 2758 1 dom (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cdif 3940  c0 4317  ccnv 5668  dom cdm 5669  ran crn 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-xp 5675  df-rel 5676  df-cnv 5677  df-dm 5679  df-rn 5680
This theorem is referenced by:  rnnonrel  42900
  Copyright terms: Public domain W3C validator