Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmnonrel Structured version   Visualization version   GIF version

Theorem dmnonrel 43548
Description: The domain of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
dmnonrel dom (𝐴𝐴) = ∅

Proof of Theorem dmnonrel
StepHypRef Expression
1 dfdm4 5915 . 2 dom (𝐴𝐴) = ran (𝐴𝐴)
2 cnvnonrel 43546 . . 3 (𝐴𝐴) = ∅
32rneqi 5957 . 2 ran (𝐴𝐴) = ran ∅
4 rn0 5945 . 2 ran ∅ = ∅
51, 3, 43eqtri 2772 1 dom (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3973  c0 4352  ccnv 5694  dom cdm 5695  ran crn 5696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5701  df-rel 5702  df-cnv 5703  df-dm 5705  df-rn 5706
This theorem is referenced by:  rnnonrel  43549
  Copyright terms: Public domain W3C validator