Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvnonrel Structured version   Visualization version   GIF version

Theorem fvnonrel 41094
Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.)
Assertion
Ref Expression
fvnonrel ((𝐴𝐴)‘𝑋) = ∅

Proof of Theorem fvnonrel
StepHypRef Expression
1 fvrn0 6784 . . 3 ((𝐴𝐴)‘𝑋) ∈ (ran (𝐴𝐴) ∪ {∅})
2 rnnonrel 41088 . . . . 5 ran (𝐴𝐴) = ∅
3 0ss 4327 . . . . 5 ∅ ⊆ {∅}
42, 3eqsstri 3951 . . . 4 ran (𝐴𝐴) ⊆ {∅}
5 ssequn1 4110 . . . 4 (ran (𝐴𝐴) ⊆ {∅} ↔ (ran (𝐴𝐴) ∪ {∅}) = {∅})
64, 5mpbi 229 . . 3 (ran (𝐴𝐴) ∪ {∅}) = {∅}
71, 6eleqtri 2837 . 2 ((𝐴𝐴)‘𝑋) ∈ {∅}
8 fvex 6769 . . 3 ((𝐴𝐴)‘𝑋) ∈ V
98elsn 4573 . 2 (((𝐴𝐴)‘𝑋) ∈ {∅} ↔ ((𝐴𝐴)‘𝑋) = ∅)
107, 9mpbi 229 1 ((𝐴𝐴)‘𝑋) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  cdif 3880  cun 3881  wss 3883  c0 4253  {csn 4558  ccnv 5579  ran crn 5581  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-iota 6376  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator