| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvnonrel | Structured version Visualization version GIF version | ||
| Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.) |
| Ref | Expression |
|---|---|
| fvnonrel | ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvrn0 6858 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) | |
| 2 | rnnonrel 43711 | . . . . 5 ⊢ ran (𝐴 ∖ ◡◡𝐴) = ∅ | |
| 3 | 0ss 4349 | . . . . 5 ⊢ ∅ ⊆ {∅} | |
| 4 | 2, 3 | eqsstri 3977 | . . . 4 ⊢ ran (𝐴 ∖ ◡◡𝐴) ⊆ {∅} |
| 5 | ssequn1 4135 | . . . 4 ⊢ (ran (𝐴 ∖ ◡◡𝐴) ⊆ {∅} ↔ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) = {∅}) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) = {∅} |
| 7 | 1, 6 | eleqtri 2831 | . 2 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ {∅} |
| 8 | fvex 6843 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ V | |
| 9 | 8 | elsn 4592 | . 2 ⊢ (((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ {∅} ↔ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅) |
| 10 | 7, 9 | mpbi 230 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∪ cun 3896 ⊆ wss 3898 ∅c0 4282 {csn 4577 ◡ccnv 5620 ran crn 5622 ‘cfv 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-iota 6444 df-fv 6496 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |