Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvnonrel Structured version   Visualization version   GIF version

Theorem fvnonrel 43593
Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.)
Assertion
Ref Expression
fvnonrel ((𝐴𝐴)‘𝑋) = ∅

Proof of Theorem fvnonrel
StepHypRef Expression
1 fvrn0 6891 . . 3 ((𝐴𝐴)‘𝑋) ∈ (ran (𝐴𝐴) ∪ {∅})
2 rnnonrel 43587 . . . . 5 ran (𝐴𝐴) = ∅
3 0ss 4366 . . . . 5 ∅ ⊆ {∅}
42, 3eqsstri 3996 . . . 4 ran (𝐴𝐴) ⊆ {∅}
5 ssequn1 4152 . . . 4 (ran (𝐴𝐴) ⊆ {∅} ↔ (ran (𝐴𝐴) ∪ {∅}) = {∅})
64, 5mpbi 230 . . 3 (ran (𝐴𝐴) ∪ {∅}) = {∅}
71, 6eleqtri 2827 . 2 ((𝐴𝐴)‘𝑋) ∈ {∅}
8 fvex 6874 . . 3 ((𝐴𝐴)‘𝑋) ∈ V
98elsn 4607 . 2 (((𝐴𝐴)‘𝑋) ∈ {∅} ↔ ((𝐴𝐴)‘𝑋) = ∅)
107, 9mpbi 230 1 ((𝐴𝐴)‘𝑋) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cdif 3914  cun 3915  wss 3917  c0 4299  {csn 4592  ccnv 5640  ran crn 5642  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-iota 6467  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator