Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvnonrel Structured version   Visualization version   GIF version

Theorem fvnonrel 43717
Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.)
Assertion
Ref Expression
fvnonrel ((𝐴𝐴)‘𝑋) = ∅

Proof of Theorem fvnonrel
StepHypRef Expression
1 fvrn0 6858 . . 3 ((𝐴𝐴)‘𝑋) ∈ (ran (𝐴𝐴) ∪ {∅})
2 rnnonrel 43711 . . . . 5 ran (𝐴𝐴) = ∅
3 0ss 4349 . . . . 5 ∅ ⊆ {∅}
42, 3eqsstri 3977 . . . 4 ran (𝐴𝐴) ⊆ {∅}
5 ssequn1 4135 . . . 4 (ran (𝐴𝐴) ⊆ {∅} ↔ (ran (𝐴𝐴) ∪ {∅}) = {∅})
64, 5mpbi 230 . . 3 (ran (𝐴𝐴) ∪ {∅}) = {∅}
71, 6eleqtri 2831 . 2 ((𝐴𝐴)‘𝑋) ∈ {∅}
8 fvex 6843 . . 3 ((𝐴𝐴)‘𝑋) ∈ V
98elsn 4592 . 2 (((𝐴𝐴)‘𝑋) ∈ {∅} ↔ ((𝐴𝐴)‘𝑋) = ∅)
107, 9mpbi 230 1 ((𝐴𝐴)‘𝑋) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  cdif 3895  cun 3896  wss 3898  c0 4282  {csn 4577  ccnv 5620  ran crn 5622  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-iota 6444  df-fv 6496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator