| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvnonrel | Structured version Visualization version GIF version | ||
| Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.) |
| Ref | Expression |
|---|---|
| fvnonrel | ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvrn0 6906 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) | |
| 2 | rnnonrel 43615 | . . . . 5 ⊢ ran (𝐴 ∖ ◡◡𝐴) = ∅ | |
| 3 | 0ss 4375 | . . . . 5 ⊢ ∅ ⊆ {∅} | |
| 4 | 2, 3 | eqsstri 4005 | . . . 4 ⊢ ran (𝐴 ∖ ◡◡𝐴) ⊆ {∅} |
| 5 | ssequn1 4161 | . . . 4 ⊢ (ran (𝐴 ∖ ◡◡𝐴) ⊆ {∅} ↔ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) = {∅}) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) = {∅} |
| 7 | 1, 6 | eleqtri 2832 | . 2 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ {∅} |
| 8 | fvex 6889 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ V | |
| 9 | 8 | elsn 4616 | . 2 ⊢ (((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ {∅} ↔ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅) |
| 10 | 7, 9 | mpbi 230 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ∪ cun 3924 ⊆ wss 3926 ∅c0 4308 {csn 4601 ◡ccnv 5653 ran crn 5655 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-iota 6484 df-fv 6539 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |