Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvnonrel Structured version   Visualization version   GIF version

Theorem fvnonrel 42333
Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.)
Assertion
Ref Expression
fvnonrel ((𝐴𝐴)‘𝑋) = ∅

Proof of Theorem fvnonrel
StepHypRef Expression
1 fvrn0 6918 . . 3 ((𝐴𝐴)‘𝑋) ∈ (ran (𝐴𝐴) ∪ {∅})
2 rnnonrel 42327 . . . . 5 ran (𝐴𝐴) = ∅
3 0ss 4395 . . . . 5 ∅ ⊆ {∅}
42, 3eqsstri 4015 . . . 4 ran (𝐴𝐴) ⊆ {∅}
5 ssequn1 4179 . . . 4 (ran (𝐴𝐴) ⊆ {∅} ↔ (ran (𝐴𝐴) ∪ {∅}) = {∅})
64, 5mpbi 229 . . 3 (ran (𝐴𝐴) ∪ {∅}) = {∅}
71, 6eleqtri 2831 . 2 ((𝐴𝐴)‘𝑋) ∈ {∅}
8 fvex 6901 . . 3 ((𝐴𝐴)‘𝑋) ∈ V
98elsn 4642 . 2 (((𝐴𝐴)‘𝑋) ∈ {∅} ↔ ((𝐴𝐴)‘𝑋) = ∅)
107, 9mpbi 229 1 ((𝐴𝐴)‘𝑋) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  cdif 3944  cun 3945  wss 3947  c0 4321  {csn 4627  ccnv 5674  ran crn 5676  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-iota 6492  df-fv 6548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator