Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvnonrel | Structured version Visualization version GIF version |
Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.) |
Ref | Expression |
---|---|
fvnonrel | ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvrn0 6784 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) | |
2 | rnnonrel 41088 | . . . . 5 ⊢ ran (𝐴 ∖ ◡◡𝐴) = ∅ | |
3 | 0ss 4327 | . . . . 5 ⊢ ∅ ⊆ {∅} | |
4 | 2, 3 | eqsstri 3951 | . . . 4 ⊢ ran (𝐴 ∖ ◡◡𝐴) ⊆ {∅} |
5 | ssequn1 4110 | . . . 4 ⊢ (ran (𝐴 ∖ ◡◡𝐴) ⊆ {∅} ↔ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) = {∅}) | |
6 | 4, 5 | mpbi 229 | . . 3 ⊢ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) = {∅} |
7 | 1, 6 | eleqtri 2837 | . 2 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ {∅} |
8 | fvex 6769 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ V | |
9 | 8 | elsn 4573 | . 2 ⊢ (((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ {∅} ↔ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅) |
10 | 7, 9 | mpbi 229 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 {csn 4558 ◡ccnv 5579 ran crn 5581 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-iota 6376 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |