![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvnonrel | Structured version Visualization version GIF version |
Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.) |
Ref | Expression |
---|---|
fvnonrel | ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvrn0 6873 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) | |
2 | rnnonrel 41870 | . . . . 5 ⊢ ran (𝐴 ∖ ◡◡𝐴) = ∅ | |
3 | 0ss 4357 | . . . . 5 ⊢ ∅ ⊆ {∅} | |
4 | 2, 3 | eqsstri 3979 | . . . 4 ⊢ ran (𝐴 ∖ ◡◡𝐴) ⊆ {∅} |
5 | ssequn1 4141 | . . . 4 ⊢ (ran (𝐴 ∖ ◡◡𝐴) ⊆ {∅} ↔ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) = {∅}) | |
6 | 4, 5 | mpbi 229 | . . 3 ⊢ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) = {∅} |
7 | 1, 6 | eleqtri 2836 | . 2 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ {∅} |
8 | fvex 6856 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ V | |
9 | 8 | elsn 4602 | . 2 ⊢ (((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ {∅} ↔ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅) |
10 | 7, 9 | mpbi 229 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ∖ cdif 3908 ∪ cun 3909 ⊆ wss 3911 ∅c0 4283 {csn 4587 ◡ccnv 5633 ran crn 5635 ‘cfv 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 df-cnv 5642 df-dm 5644 df-rn 5645 df-iota 6449 df-fv 6505 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |