Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvnonrel Structured version   Visualization version   GIF version

Theorem fvnonrel 43586
Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.)
Assertion
Ref Expression
fvnonrel ((𝐴𝐴)‘𝑋) = ∅

Proof of Theorem fvnonrel
StepHypRef Expression
1 fvrn0 6888 . . 3 ((𝐴𝐴)‘𝑋) ∈ (ran (𝐴𝐴) ∪ {∅})
2 rnnonrel 43580 . . . . 5 ran (𝐴𝐴) = ∅
3 0ss 4363 . . . . 5 ∅ ⊆ {∅}
42, 3eqsstri 3993 . . . 4 ran (𝐴𝐴) ⊆ {∅}
5 ssequn1 4149 . . . 4 (ran (𝐴𝐴) ⊆ {∅} ↔ (ran (𝐴𝐴) ∪ {∅}) = {∅})
64, 5mpbi 230 . . 3 (ran (𝐴𝐴) ∪ {∅}) = {∅}
71, 6eleqtri 2826 . 2 ((𝐴𝐴)‘𝑋) ∈ {∅}
8 fvex 6871 . . 3 ((𝐴𝐴)‘𝑋) ∈ V
98elsn 4604 . 2 (((𝐴𝐴)‘𝑋) ∈ {∅} ↔ ((𝐴𝐴)‘𝑋) = ∅)
107, 9mpbi 230 1 ((𝐴𝐴)‘𝑋) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cdif 3911  cun 3912  wss 3914  c0 4296  {csn 4589  ccnv 5637  ran crn 5639  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-iota 6464  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator