Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvnonrel | Structured version Visualization version GIF version |
Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.) |
Ref | Expression |
---|---|
fvnonrel | ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvrn0 6802 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) | |
2 | rnnonrel 41199 | . . . . 5 ⊢ ran (𝐴 ∖ ◡◡𝐴) = ∅ | |
3 | 0ss 4330 | . . . . 5 ⊢ ∅ ⊆ {∅} | |
4 | 2, 3 | eqsstri 3955 | . . . 4 ⊢ ran (𝐴 ∖ ◡◡𝐴) ⊆ {∅} |
5 | ssequn1 4114 | . . . 4 ⊢ (ran (𝐴 ∖ ◡◡𝐴) ⊆ {∅} ↔ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) = {∅}) | |
6 | 4, 5 | mpbi 229 | . . 3 ⊢ (ran (𝐴 ∖ ◡◡𝐴) ∪ {∅}) = {∅} |
7 | 1, 6 | eleqtri 2837 | . 2 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ {∅} |
8 | fvex 6787 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ V | |
9 | 8 | elsn 4576 | . 2 ⊢ (((𝐴 ∖ ◡◡𝐴)‘𝑋) ∈ {∅} ↔ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅) |
10 | 7, 9 | mpbi 229 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 {csn 4561 ◡ccnv 5588 ran crn 5590 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-iota 6391 df-fv 6441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |