Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resnonrel Structured version   Visualization version   GIF version

Theorem resnonrel 43553
Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
resnonrel ((𝐴𝐴) ↾ 𝐵) = ∅

Proof of Theorem resnonrel
StepHypRef Expression
1 ssv 3979 . . . 4 𝐵 ⊆ V
2 ssres2 5983 . . . 4 (𝐵 ⊆ V → ((𝐴𝐴) ↾ 𝐵) ⊆ ((𝐴𝐴) ↾ V))
31, 2ax-mp 5 . . 3 ((𝐴𝐴) ↾ 𝐵) ⊆ ((𝐴𝐴) ↾ V)
4 cnvnonrel 43549 . . . . 5 (𝐴𝐴) = ∅
54cnveqi 5846 . . . 4 (𝐴𝐴) =
6 cnvcnv2 6174 . . . 4 (𝐴𝐴) = ((𝐴𝐴) ↾ V)
7 cnv0 6121 . . . 4 ∅ = ∅
85, 6, 73eqtr3i 2761 . . 3 ((𝐴𝐴) ↾ V) = ∅
93, 8sseqtri 4003 . 2 ((𝐴𝐴) ↾ 𝐵) ⊆ ∅
10 ss0b 4372 . 2 (((𝐴𝐴) ↾ 𝐵) ⊆ ∅ ↔ ((𝐴𝐴) ↾ 𝐵) = ∅)
119, 10mpbi 230 1 ((𝐴𝐴) ↾ 𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3455  cdif 3919  wss 3922  c0 4304  ccnv 5645  cres 5648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-xp 5652  df-rel 5653  df-cnv 5654  df-res 5658
This theorem is referenced by:  imanonrel  43554
  Copyright terms: Public domain W3C validator