Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resnonrel | Structured version Visualization version GIF version |
Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
resnonrel | ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3941 | . . . 4 ⊢ 𝐵 ⊆ V | |
2 | ssres2 5908 | . . . 4 ⊢ (𝐵 ⊆ V → ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ((𝐴 ∖ ◡◡𝐴) ↾ V)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ((𝐴 ∖ ◡◡𝐴) ↾ V) |
4 | cnvnonrel 41085 | . . . . 5 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
5 | 4 | cnveqi 5772 | . . . 4 ⊢ ◡◡(𝐴 ∖ ◡◡𝐴) = ◡∅ |
6 | cnvcnv2 6085 | . . . 4 ⊢ ◡◡(𝐴 ∖ ◡◡𝐴) = ((𝐴 ∖ ◡◡𝐴) ↾ V) | |
7 | cnv0 6033 | . . . 4 ⊢ ◡∅ = ∅ | |
8 | 5, 6, 7 | 3eqtr3i 2774 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ V) = ∅ |
9 | 3, 8 | sseqtri 3953 | . 2 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ∅ |
10 | ss0b 4328 | . 2 ⊢ (((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ∅ ↔ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅) | |
11 | 9, 10 | mpbi 229 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 ◡ccnv 5579 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-res 5592 |
This theorem is referenced by: imanonrel 41090 |
Copyright terms: Public domain | W3C validator |