| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resnonrel | Structured version Visualization version GIF version | ||
| Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| Ref | Expression |
|---|---|
| resnonrel | ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3962 | . . . 4 ⊢ 𝐵 ⊆ V | |
| 2 | ssres2 5959 | . . . 4 ⊢ (𝐵 ⊆ V → ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ((𝐴 ∖ ◡◡𝐴) ↾ V)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ((𝐴 ∖ ◡◡𝐴) ↾ V) |
| 4 | cnvnonrel 43561 | . . . . 5 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
| 5 | 4 | cnveqi 5821 | . . . 4 ⊢ ◡◡(𝐴 ∖ ◡◡𝐴) = ◡∅ |
| 6 | cnvcnv2 6146 | . . . 4 ⊢ ◡◡(𝐴 ∖ ◡◡𝐴) = ((𝐴 ∖ ◡◡𝐴) ↾ V) | |
| 7 | cnv0 6093 | . . . 4 ⊢ ◡∅ = ∅ | |
| 8 | 5, 6, 7 | 3eqtr3i 2760 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ V) = ∅ |
| 9 | 3, 8 | sseqtri 3986 | . 2 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ∅ |
| 10 | ss0b 4354 | . 2 ⊢ (((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ∅ ↔ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅) | |
| 11 | 9, 10 | mpbi 230 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 ∅c0 4286 ◡ccnv 5622 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-res 5635 |
| This theorem is referenced by: imanonrel 43566 |
| Copyright terms: Public domain | W3C validator |