Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resnonrel Structured version   Visualization version   GIF version

Theorem resnonrel 43596
Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
resnonrel ((𝐴𝐴) ↾ 𝐵) = ∅

Proof of Theorem resnonrel
StepHypRef Expression
1 ssv 4021 . . . 4 𝐵 ⊆ V
2 ssres2 6026 . . . 4 (𝐵 ⊆ V → ((𝐴𝐴) ↾ 𝐵) ⊆ ((𝐴𝐴) ↾ V))
31, 2ax-mp 5 . . 3 ((𝐴𝐴) ↾ 𝐵) ⊆ ((𝐴𝐴) ↾ V)
4 cnvnonrel 43592 . . . . 5 (𝐴𝐴) = ∅
54cnveqi 5889 . . . 4 (𝐴𝐴) =
6 cnvcnv2 6218 . . . 4 (𝐴𝐴) = ((𝐴𝐴) ↾ V)
7 cnv0 6165 . . . 4 ∅ = ∅
85, 6, 73eqtr3i 2772 . . 3 ((𝐴𝐴) ↾ V) = ∅
93, 8sseqtri 4033 . 2 ((𝐴𝐴) ↾ 𝐵) ⊆ ∅
10 ss0b 4408 . 2 (((𝐴𝐴) ↾ 𝐵) ⊆ ∅ ↔ ((𝐴𝐴) ↾ 𝐵) = ∅)
119, 10mpbi 230 1 ((𝐴𝐴) ↾ 𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  Vcvv 3479  cdif 3961  wss 3964  c0 4340  ccnv 5689  cres 5692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5150  df-opab 5212  df-xp 5696  df-rel 5697  df-cnv 5698  df-res 5702
This theorem is referenced by:  imanonrel  43597
  Copyright terms: Public domain W3C validator