Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resnonrel Structured version   Visualization version   GIF version

Theorem resnonrel 43543
Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
resnonrel ((𝐴𝐴) ↾ 𝐵) = ∅

Proof of Theorem resnonrel
StepHypRef Expression
1 ssv 3988 . . . 4 𝐵 ⊆ V
2 ssres2 6002 . . . 4 (𝐵 ⊆ V → ((𝐴𝐴) ↾ 𝐵) ⊆ ((𝐴𝐴) ↾ V))
31, 2ax-mp 5 . . 3 ((𝐴𝐴) ↾ 𝐵) ⊆ ((𝐴𝐴) ↾ V)
4 cnvnonrel 43539 . . . . 5 (𝐴𝐴) = ∅
54cnveqi 5865 . . . 4 (𝐴𝐴) =
6 cnvcnv2 6193 . . . 4 (𝐴𝐴) = ((𝐴𝐴) ↾ V)
7 cnv0 6140 . . . 4 ∅ = ∅
85, 6, 73eqtr3i 2765 . . 3 ((𝐴𝐴) ↾ V) = ∅
93, 8sseqtri 4012 . 2 ((𝐴𝐴) ↾ 𝐵) ⊆ ∅
10 ss0b 4381 . 2 (((𝐴𝐴) ↾ 𝐵) ⊆ ∅ ↔ ((𝐴𝐴) ↾ 𝐵) = ∅)
119, 10mpbi 230 1 ((𝐴𝐴) ↾ 𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3463  cdif 3928  wss 3931  c0 4313  ccnv 5664  cres 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-res 5677
This theorem is referenced by:  imanonrel  43544
  Copyright terms: Public domain W3C validator