| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resnonrel | Structured version Visualization version GIF version | ||
| Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| Ref | Expression |
|---|---|
| resnonrel | ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3955 | . . . 4 ⊢ 𝐵 ⊆ V | |
| 2 | ssres2 5959 | . . . 4 ⊢ (𝐵 ⊆ V → ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ((𝐴 ∖ ◡◡𝐴) ↾ V)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ((𝐴 ∖ ◡◡𝐴) ↾ V) |
| 4 | cnvnonrel 43708 | . . . . 5 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
| 5 | 4 | cnveqi 5820 | . . . 4 ⊢ ◡◡(𝐴 ∖ ◡◡𝐴) = ◡∅ |
| 6 | cnvcnv2 6147 | . . . 4 ⊢ ◡◡(𝐴 ∖ ◡◡𝐴) = ((𝐴 ∖ ◡◡𝐴) ↾ V) | |
| 7 | cnv0 6093 | . . . 4 ⊢ ◡∅ = ∅ | |
| 8 | 5, 6, 7 | 3eqtr3i 2764 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ V) = ∅ |
| 9 | 3, 8 | sseqtri 3979 | . 2 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ∅ |
| 10 | ss0b 4350 | . 2 ⊢ (((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ∅ ↔ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅) | |
| 11 | 9, 10 | mpbi 230 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4282 ◡ccnv 5620 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-res 5633 |
| This theorem is referenced by: imanonrel 43713 |
| Copyright terms: Public domain | W3C validator |