![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resnonrel | Structured version Visualization version GIF version |
Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
resnonrel | ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4021 | . . . 4 ⊢ 𝐵 ⊆ V | |
2 | ssres2 6026 | . . . 4 ⊢ (𝐵 ⊆ V → ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ((𝐴 ∖ ◡◡𝐴) ↾ V)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ((𝐴 ∖ ◡◡𝐴) ↾ V) |
4 | cnvnonrel 43592 | . . . . 5 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
5 | 4 | cnveqi 5889 | . . . 4 ⊢ ◡◡(𝐴 ∖ ◡◡𝐴) = ◡∅ |
6 | cnvcnv2 6218 | . . . 4 ⊢ ◡◡(𝐴 ∖ ◡◡𝐴) = ((𝐴 ∖ ◡◡𝐴) ↾ V) | |
7 | cnv0 6165 | . . . 4 ⊢ ◡∅ = ∅ | |
8 | 5, 6, 7 | 3eqtr3i 2772 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ V) = ∅ |
9 | 3, 8 | sseqtri 4033 | . 2 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ∅ |
10 | ss0b 4408 | . 2 ⊢ (((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ∅ ↔ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅) | |
11 | 9, 10 | mpbi 230 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 Vcvv 3479 ∖ cdif 3961 ⊆ wss 3964 ∅c0 4340 ◡ccnv 5689 ↾ cres 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5150 df-opab 5212 df-xp 5696 df-rel 5697 df-cnv 5698 df-res 5702 |
This theorem is referenced by: imanonrel 43597 |
Copyright terms: Public domain | W3C validator |