Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resnonrel Structured version   Visualization version   GIF version

Theorem resnonrel 41200
Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
resnonrel ((𝐴𝐴) ↾ 𝐵) = ∅

Proof of Theorem resnonrel
StepHypRef Expression
1 ssv 3945 . . . 4 𝐵 ⊆ V
2 ssres2 5919 . . . 4 (𝐵 ⊆ V → ((𝐴𝐴) ↾ 𝐵) ⊆ ((𝐴𝐴) ↾ V))
31, 2ax-mp 5 . . 3 ((𝐴𝐴) ↾ 𝐵) ⊆ ((𝐴𝐴) ↾ V)
4 cnvnonrel 41196 . . . . 5 (𝐴𝐴) = ∅
54cnveqi 5783 . . . 4 (𝐴𝐴) =
6 cnvcnv2 6096 . . . 4 (𝐴𝐴) = ((𝐴𝐴) ↾ V)
7 cnv0 6044 . . . 4 ∅ = ∅
85, 6, 73eqtr3i 2774 . . 3 ((𝐴𝐴) ↾ V) = ∅
93, 8sseqtri 3957 . 2 ((𝐴𝐴) ↾ 𝐵) ⊆ ∅
10 ss0b 4331 . 2 (((𝐴𝐴) ↾ 𝐵) ⊆ ∅ ↔ ((𝐴𝐴) ↾ 𝐵) = ∅)
119, 10mpbi 229 1 ((𝐴𝐴) ↾ 𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3432  cdif 3884  wss 3887  c0 4256  ccnv 5588  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-res 5601
This theorem is referenced by:  imanonrel  41201
  Copyright terms: Public domain W3C validator