Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resnonrel Structured version   Visualization version   GIF version

Theorem resnonrel 41089
Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
resnonrel ((𝐴𝐴) ↾ 𝐵) = ∅

Proof of Theorem resnonrel
StepHypRef Expression
1 ssv 3941 . . . 4 𝐵 ⊆ V
2 ssres2 5908 . . . 4 (𝐵 ⊆ V → ((𝐴𝐴) ↾ 𝐵) ⊆ ((𝐴𝐴) ↾ V))
31, 2ax-mp 5 . . 3 ((𝐴𝐴) ↾ 𝐵) ⊆ ((𝐴𝐴) ↾ V)
4 cnvnonrel 41085 . . . . 5 (𝐴𝐴) = ∅
54cnveqi 5772 . . . 4 (𝐴𝐴) =
6 cnvcnv2 6085 . . . 4 (𝐴𝐴) = ((𝐴𝐴) ↾ V)
7 cnv0 6033 . . . 4 ∅ = ∅
85, 6, 73eqtr3i 2774 . . 3 ((𝐴𝐴) ↾ V) = ∅
93, 8sseqtri 3953 . 2 ((𝐴𝐴) ↾ 𝐵) ⊆ ∅
10 ss0b 4328 . 2 (((𝐴𝐴) ↾ 𝐵) ⊆ ∅ ↔ ((𝐴𝐴) ↾ 𝐵) = ∅)
119, 10mpbi 229 1 ((𝐴𝐴) ↾ 𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3422  cdif 3880  wss 3883  c0 4253  ccnv 5579  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-res 5592
This theorem is referenced by:  imanonrel  41090
  Copyright terms: Public domain W3C validator