![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resnonrel | Structured version Visualization version GIF version |
Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
resnonrel | ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4005 | . . . 4 ⊢ 𝐵 ⊆ V | |
2 | ssres2 6007 | . . . 4 ⊢ (𝐵 ⊆ V → ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ((𝐴 ∖ ◡◡𝐴) ↾ V)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ((𝐴 ∖ ◡◡𝐴) ↾ V) |
4 | cnvnonrel 42324 | . . . . 5 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
5 | 4 | cnveqi 5872 | . . . 4 ⊢ ◡◡(𝐴 ∖ ◡◡𝐴) = ◡∅ |
6 | cnvcnv2 6189 | . . . 4 ⊢ ◡◡(𝐴 ∖ ◡◡𝐴) = ((𝐴 ∖ ◡◡𝐴) ↾ V) | |
7 | cnv0 6137 | . . . 4 ⊢ ◡∅ = ∅ | |
8 | 5, 6, 7 | 3eqtr3i 2768 | . . 3 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ V) = ∅ |
9 | 3, 8 | sseqtri 4017 | . 2 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ∅ |
10 | ss0b 4396 | . 2 ⊢ (((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) ⊆ ∅ ↔ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅) | |
11 | 9, 10 | mpbi 229 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 Vcvv 3474 ∖ cdif 3944 ⊆ wss 3947 ∅c0 4321 ◡ccnv 5674 ↾ cres 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-res 5687 |
This theorem is referenced by: imanonrel 42329 |
Copyright terms: Public domain | W3C validator |