Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ad2antl3 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antl3 | ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantll 711 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
3 | 2 | 3adantl1 1165 | 1 ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: simpl3 1192 simpl3l 1227 simpl3r 1228 simpl31 1253 simpl32 1254 simpl33 1255 rspc3ev 3575 brcogw 5780 cocan1 7172 ov6g 7445 fpr1 8128 dif1enALT 9059 cfsmolem 10035 coftr 10038 axcc3 10203 axdc4lem 10220 gruf 10576 dedekindle 11148 zdivmul 12401 cshf1 14532 cshimadifsn 14551 fprodle 15715 bpolycl 15771 lcmdvds 16322 lubss 18240 gsumccatOLD 18488 odeq 19167 ghmplusg 19456 lmhmvsca 20316 islindf4 21054 mndifsplit 21794 gsummatr01lem3 21815 gsummatr01 21817 mp2pm2mplem4 21967 elcls 22233 cnpresti 22448 cmpsublem 22559 comppfsc 22692 ptpjcn 22771 elfm3 23110 rnelfmlem 23112 nmoix 23902 caublcls 24482 ig1pdvds 25350 coeid3 25410 amgm 26149 brbtwn2 27282 colinearalg 27287 axsegconlem1 27294 ax5seglem1 27305 ax5seglem2 27306 homco1 30172 hoadddi 30174 br6 33733 lindsenlbs 35781 upixp 35896 filbcmb 35907 3dim1 37488 llni 37529 lplni 37553 lvoli 37596 cdleme42mgN 38509 mzprename 40578 infmrgelbi 40707 relexpxpmin 41332 n0p 42598 rexabslelem 42965 limcleqr 43192 fnlimfvre 43222 stoweidlem17 43565 stoweidlem28 43576 fourierdlem12 43667 fourierdlem41 43696 fourierdlem42 43697 fourierdlem74 43728 fourierdlem77 43731 qndenserrnopnlem 43845 issalnnd 43891 hspmbllem2 44172 issmfle 44290 smflimlem2 44317 smflimmpt 44354 smfinflem 44361 smflimsuplem7 44370 smflimsupmpt 44373 smfliminfmpt 44376 lighneallem3 45070 |
Copyright terms: Public domain | W3C validator |