| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antl3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl3 | ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantll 714 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1167 | 1 ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpl3 1194 simpl3l 1229 simpl3r 1230 simpl31 1255 simpl32 1256 simpl33 1257 rspc3ev 3618 brcogw 5848 cocan1 7284 ov6g 7571 fpr1 8302 dif1enlem 9170 dif1ennnALT 9283 cfsmolem 10284 coftr 10287 axcc3 10452 axdc4lem 10469 gruf 10825 dedekindle 11399 zdivmul 12665 cshf1 14828 cshimadifsn 14848 fprodle 16012 bpolycl 16068 lcmdvds 16627 lubss 18523 odeq 19531 ghmplusg 19827 lmhmvsca 21003 islindf4 21798 mndifsplit 22574 gsummatr01lem3 22595 gsummatr01 22597 mp2pm2mplem4 22747 elcls 23011 cnpresti 23226 cmpsublem 23337 comppfsc 23470 ptpjcn 23549 elfm3 23888 rnelfmlem 23890 nmoix 24668 caublcls 25261 ig1pdvds 26137 coeid3 26197 amgm 26953 brbtwn2 28884 colinearalg 28889 axsegconlem1 28896 ax5seglem1 28907 ax5seglem2 28908 homco1 31782 hoadddi 31784 br6 35774 lindsenlbs 37639 upixp 37753 filbcmb 37764 3dim1 39486 llni 39527 lplni 39551 lvoli 39594 cdleme42mgN 40507 mzprename 42772 infmrgelbi 42901 relexpxpmin 43741 n0p 45069 rexabslelem 45445 pimxrneun 45515 limcleqr 45673 fnlimfvre 45703 stoweidlem17 46046 stoweidlem28 46057 fourierdlem12 46148 fourierdlem41 46177 fourierdlem42 46178 fourierdlem74 46209 fourierdlem77 46212 qndenserrnopnlem 46326 issalnnd 46374 hspmbllem2 46656 issmfle 46774 smflimlem2 46801 smflimmpt 46839 smfinflem 46846 smflimsuplem7 46855 smflimsupmpt 46858 smfliminfmpt 46861 lighneallem3 47621 |
| Copyright terms: Public domain | W3C validator |