| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antl3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl3 | ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantll 714 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1167 | 1 ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpl3 1194 simpl3l 1229 simpl3r 1230 simpl31 1255 simpl32 1256 simpl33 1257 rspc3ev 3594 brcogw 5811 cocan1 7228 ov6g 7513 fpr1 8236 dif1enlem 9073 dif1ennnALT 9166 cfsmolem 10164 coftr 10167 axcc3 10332 axdc4lem 10349 gruf 10705 dedekindle 11280 zdivmul 12548 cshf1 14716 cshimadifsn 14736 fprodle 15903 bpolycl 15959 lcmdvds 16519 lubss 18419 odeq 19429 ghmplusg 19725 lmhmvsca 20949 islindf4 21745 mndifsplit 22521 gsummatr01lem3 22542 gsummatr01 22544 mp2pm2mplem4 22694 elcls 22958 cnpresti 23173 cmpsublem 23284 comppfsc 23417 ptpjcn 23496 elfm3 23835 rnelfmlem 23837 nmoix 24615 caublcls 25207 ig1pdvds 26083 coeid3 26143 amgm 26899 brbtwn2 28850 colinearalg 28855 axsegconlem1 28862 ax5seglem1 28873 ax5seglem2 28874 homco1 31745 hoadddi 31747 br6 35740 lindsenlbs 37605 upixp 37719 filbcmb 37730 3dim1 39456 llni 39497 lplni 39521 lvoli 39564 cdleme42mgN 40477 mzprename 42732 infmrgelbi 42861 relexpxpmin 43700 n0p 45033 rexabslelem 45407 pimxrneun 45477 limcleqr 45635 fnlimfvre 45665 stoweidlem17 46008 stoweidlem28 46019 fourierdlem12 46110 fourierdlem41 46139 fourierdlem42 46140 fourierdlem74 46171 fourierdlem77 46174 qndenserrnopnlem 46288 issalnnd 46336 hspmbllem2 46618 issmfle 46736 smflimlem2 46763 smflimmpt 46801 smfinflem 46808 smflimsuplem7 46817 smflimsupmpt 46820 smfliminfmpt 46823 lighneallem3 47601 |
| Copyright terms: Public domain | W3C validator |