Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ad2antl3 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antl3 | ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantll 711 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
3 | 2 | 3adantl1 1165 | 1 ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: simpl3 1192 simpl3l 1227 simpl3r 1228 simpl31 1253 simpl32 1254 simpl33 1255 rspc3ev 3583 brcogw 5810 cocan1 7219 ov6g 7498 fpr1 8189 dif1enlem 9021 dif1ennnALT 9142 cfsmolem 10127 coftr 10130 axcc3 10295 axdc4lem 10312 gruf 10668 dedekindle 11240 zdivmul 12493 cshf1 14621 cshimadifsn 14641 fprodle 15805 bpolycl 15861 lcmdvds 16410 lubss 18328 odeq 19254 ghmplusg 19542 lmhmvsca 20413 islindf4 21151 mndifsplit 21891 gsummatr01lem3 21912 gsummatr01 21914 mp2pm2mplem4 22064 elcls 22330 cnpresti 22545 cmpsublem 22656 comppfsc 22789 ptpjcn 22868 elfm3 23207 rnelfmlem 23209 nmoix 23999 caublcls 24579 ig1pdvds 25447 coeid3 25507 amgm 26246 brbtwn2 27562 colinearalg 27567 axsegconlem1 27574 ax5seglem1 27585 ax5seglem2 27586 homco1 30451 hoadddi 30453 br6 34013 lindsenlbs 35877 upixp 35992 filbcmb 36003 3dim1 37735 llni 37776 lplni 37800 lvoli 37843 cdleme42mgN 38756 mzprename 40833 infmrgelbi 40962 relexpxpmin 41646 n0p 42911 rexabslelem 43293 pimxrneun 43364 limcleqr 43521 fnlimfvre 43551 stoweidlem17 43894 stoweidlem28 43905 fourierdlem12 43996 fourierdlem41 44025 fourierdlem42 44026 fourierdlem74 44057 fourierdlem77 44060 qndenserrnopnlem 44174 issalnnd 44220 hspmbllem2 44502 issmfle 44620 smflimlem2 44647 smflimmpt 44685 smfinflem 44692 smflimsuplem7 44701 smflimsupmpt 44704 smfliminfmpt 44707 lighneallem3 45410 |
Copyright terms: Public domain | W3C validator |