| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antl3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl3 | ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantll 714 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1167 | 1 ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpl3 1194 simpl3l 1229 simpl3r 1230 simpl31 1255 simpl32 1256 simpl33 1257 rspc3ev 3602 brcogw 5822 cocan1 7248 ov6g 7533 fpr1 8259 dif1enlem 9097 dif1ennnALT 9198 cfsmolem 10199 coftr 10202 axcc3 10367 axdc4lem 10384 gruf 10740 dedekindle 11314 zdivmul 12582 cshf1 14751 cshimadifsn 14771 fprodle 15938 bpolycl 15994 lcmdvds 16554 lubss 18454 odeq 19464 ghmplusg 19760 lmhmvsca 20984 islindf4 21780 mndifsplit 22556 gsummatr01lem3 22577 gsummatr01 22579 mp2pm2mplem4 22729 elcls 22993 cnpresti 23208 cmpsublem 23319 comppfsc 23452 ptpjcn 23531 elfm3 23870 rnelfmlem 23872 nmoix 24650 caublcls 25242 ig1pdvds 26118 coeid3 26178 amgm 26934 brbtwn2 28885 colinearalg 28890 axsegconlem1 28897 ax5seglem1 28908 ax5seglem2 28909 homco1 31780 hoadddi 31782 br6 35737 lindsenlbs 37602 upixp 37716 filbcmb 37727 3dim1 39454 llni 39495 lplni 39519 lvoli 39562 cdleme42mgN 40475 mzprename 42730 infmrgelbi 42859 relexpxpmin 43699 n0p 45032 rexabslelem 45407 pimxrneun 45477 limcleqr 45635 fnlimfvre 45665 stoweidlem17 46008 stoweidlem28 46019 fourierdlem12 46110 fourierdlem41 46139 fourierdlem42 46140 fourierdlem74 46171 fourierdlem77 46174 qndenserrnopnlem 46288 issalnnd 46336 hspmbllem2 46618 issmfle 46736 smflimlem2 46763 smflimmpt 46801 smfinflem 46808 smflimsuplem7 46817 smflimsupmpt 46820 smfliminfmpt 46823 lighneallem3 47601 |
| Copyright terms: Public domain | W3C validator |