| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antl3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl3 | ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantll 714 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1167 | 1 ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpl3 1194 simpl3l 1229 simpl3r 1230 simpl31 1255 simpl32 1256 simpl33 1257 rspc3ev 3608 brcogw 5835 cocan1 7269 ov6g 7556 fpr1 8285 dif1enlem 9126 dif1ennnALT 9229 cfsmolem 10230 coftr 10233 axcc3 10398 axdc4lem 10415 gruf 10771 dedekindle 11345 zdivmul 12613 cshf1 14782 cshimadifsn 14802 fprodle 15969 bpolycl 16025 lcmdvds 16585 lubss 18479 odeq 19487 ghmplusg 19783 lmhmvsca 20959 islindf4 21754 mndifsplit 22530 gsummatr01lem3 22551 gsummatr01 22553 mp2pm2mplem4 22703 elcls 22967 cnpresti 23182 cmpsublem 23293 comppfsc 23426 ptpjcn 23505 elfm3 23844 rnelfmlem 23846 nmoix 24624 caublcls 25216 ig1pdvds 26092 coeid3 26152 amgm 26908 brbtwn2 28839 colinearalg 28844 axsegconlem1 28851 ax5seglem1 28862 ax5seglem2 28863 homco1 31737 hoadddi 31739 br6 35751 lindsenlbs 37616 upixp 37730 filbcmb 37741 3dim1 39468 llni 39509 lplni 39533 lvoli 39576 cdleme42mgN 40489 mzprename 42744 infmrgelbi 42873 relexpxpmin 43713 n0p 45046 rexabslelem 45421 pimxrneun 45491 limcleqr 45649 fnlimfvre 45679 stoweidlem17 46022 stoweidlem28 46033 fourierdlem12 46124 fourierdlem41 46153 fourierdlem42 46154 fourierdlem74 46185 fourierdlem77 46188 qndenserrnopnlem 46302 issalnnd 46350 hspmbllem2 46632 issmfle 46750 smflimlem2 46777 smflimmpt 46815 smfinflem 46822 smflimsuplem7 46831 smflimsupmpt 46834 smfliminfmpt 46837 lighneallem3 47612 |
| Copyright terms: Public domain | W3C validator |