![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antl3 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antl3 | ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantll 713 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
3 | 2 | 3adantl1 1166 | 1 ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: simpl3 1193 simpl3l 1228 simpl3r 1229 simpl31 1254 simpl32 1255 simpl33 1256 rspc3ev 3652 brcogw 5893 cocan1 7327 ov6g 7614 fpr1 8344 dif1enlem 9222 dif1ennnALT 9339 cfsmolem 10339 coftr 10342 axcc3 10507 axdc4lem 10524 gruf 10880 dedekindle 11454 zdivmul 12715 cshf1 14858 cshimadifsn 14878 fprodle 16044 bpolycl 16100 lcmdvds 16655 lubss 18583 odeq 19592 ghmplusg 19888 lmhmvsca 21067 islindf4 21881 mndifsplit 22663 gsummatr01lem3 22684 gsummatr01 22686 mp2pm2mplem4 22836 elcls 23102 cnpresti 23317 cmpsublem 23428 comppfsc 23561 ptpjcn 23640 elfm3 23979 rnelfmlem 23981 nmoix 24771 caublcls 25362 ig1pdvds 26239 coeid3 26299 amgm 27052 brbtwn2 28938 colinearalg 28943 axsegconlem1 28950 ax5seglem1 28961 ax5seglem2 28962 homco1 31833 hoadddi 31835 br6 35719 lindsenlbs 37575 upixp 37689 filbcmb 37700 3dim1 39424 llni 39465 lplni 39489 lvoli 39532 cdleme42mgN 40445 mzprename 42705 infmrgelbi 42834 relexpxpmin 43679 n0p 44945 rexabslelem 45333 pimxrneun 45404 limcleqr 45565 fnlimfvre 45595 stoweidlem17 45938 stoweidlem28 45949 fourierdlem12 46040 fourierdlem41 46069 fourierdlem42 46070 fourierdlem74 46101 fourierdlem77 46104 qndenserrnopnlem 46218 issalnnd 46266 hspmbllem2 46548 issmfle 46666 smflimlem2 46693 smflimmpt 46731 smfinflem 46738 smflimsuplem7 46747 smflimsupmpt 46750 smfliminfmpt 46753 lighneallem3 47481 |
Copyright terms: Public domain | W3C validator |