| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antl3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl3 | ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantll 714 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1167 | 1 ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpl3 1194 simpl3l 1229 simpl3r 1230 simpl31 1255 simpl32 1256 simpl33 1257 rspc3ev 3605 brcogw 5832 cocan1 7266 ov6g 7553 fpr1 8282 dif1enlem 9120 dif1ennnALT 9222 cfsmolem 10223 coftr 10226 axcc3 10391 axdc4lem 10408 gruf 10764 dedekindle 11338 zdivmul 12606 cshf1 14775 cshimadifsn 14795 fprodle 15962 bpolycl 16018 lcmdvds 16578 lubss 18472 odeq 19480 ghmplusg 19776 lmhmvsca 20952 islindf4 21747 mndifsplit 22523 gsummatr01lem3 22544 gsummatr01 22546 mp2pm2mplem4 22696 elcls 22960 cnpresti 23175 cmpsublem 23286 comppfsc 23419 ptpjcn 23498 elfm3 23837 rnelfmlem 23839 nmoix 24617 caublcls 25209 ig1pdvds 26085 coeid3 26145 amgm 26901 brbtwn2 28832 colinearalg 28837 axsegconlem1 28844 ax5seglem1 28855 ax5seglem2 28856 homco1 31730 hoadddi 31732 br6 35744 lindsenlbs 37609 upixp 37723 filbcmb 37734 3dim1 39461 llni 39502 lplni 39526 lvoli 39569 cdleme42mgN 40482 mzprename 42737 infmrgelbi 42866 relexpxpmin 43706 n0p 45039 rexabslelem 45414 pimxrneun 45484 limcleqr 45642 fnlimfvre 45672 stoweidlem17 46015 stoweidlem28 46026 fourierdlem12 46117 fourierdlem41 46146 fourierdlem42 46147 fourierdlem74 46178 fourierdlem77 46181 qndenserrnopnlem 46295 issalnnd 46343 hspmbllem2 46625 issmfle 46743 smflimlem2 46770 smflimmpt 46808 smfinflem 46815 smflimsuplem7 46824 smflimsupmpt 46827 smfliminfmpt 46830 lighneallem3 47608 |
| Copyright terms: Public domain | W3C validator |