Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ad2antl3 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antl3 | ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantll 710 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
3 | 2 | 3adantl1 1164 | 1 ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: simpl3 1191 simpl3l 1226 simpl3r 1227 simpl31 1252 simpl32 1253 simpl33 1254 rspc3ev 3566 brcogw 5766 cocan1 7143 ov6g 7414 fpr1 8090 dif1enALT 8980 cfsmolem 9957 coftr 9960 axcc3 10125 axdc4lem 10142 gruf 10498 dedekindle 11069 zdivmul 12322 cshf1 14451 cshimadifsn 14470 fprodle 15634 bpolycl 15690 lcmdvds 16241 lubss 18146 gsumccatOLD 18394 odeq 19073 ghmplusg 19362 lmhmvsca 20222 islindf4 20955 mndifsplit 21693 gsummatr01lem3 21714 gsummatr01 21716 mp2pm2mplem4 21866 elcls 22132 cnpresti 22347 cmpsublem 22458 comppfsc 22591 ptpjcn 22670 elfm3 23009 rnelfmlem 23011 nmoix 23799 caublcls 24378 ig1pdvds 25246 coeid3 25306 amgm 26045 brbtwn2 27176 colinearalg 27181 axsegconlem1 27188 ax5seglem1 27199 ax5seglem2 27200 homco1 30064 hoadddi 30066 br6 33630 lindsenlbs 35699 upixp 35814 filbcmb 35825 3dim1 37408 llni 37449 lplni 37473 lvoli 37516 cdleme42mgN 38429 mzprename 40487 infmrgelbi 40616 relexpxpmin 41214 n0p 42480 rexabslelem 42848 limcleqr 43075 fnlimfvre 43105 stoweidlem17 43448 stoweidlem28 43459 fourierdlem12 43550 fourierdlem41 43579 fourierdlem42 43580 fourierdlem74 43611 fourierdlem77 43614 qndenserrnopnlem 43728 issalnnd 43774 hspmbllem2 44055 issmfle 44168 smflimlem2 44194 smflimmpt 44230 smfinflem 44237 smflimsuplem7 44246 smflimsupmpt 44249 smfliminfmpt 44252 lighneallem3 44947 |
Copyright terms: Public domain | W3C validator |