![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antl3 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antl3 | ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantll 714 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
3 | 2 | 3adantl1 1165 | 1 ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: simpl3 1192 simpl3l 1227 simpl3r 1228 simpl31 1253 simpl32 1254 simpl33 1255 rspc3ev 3639 brcogw 5882 cocan1 7311 ov6g 7597 fpr1 8327 dif1enlem 9195 dif1ennnALT 9309 cfsmolem 10308 coftr 10311 axcc3 10476 axdc4lem 10493 gruf 10849 dedekindle 11423 zdivmul 12688 cshf1 14845 cshimadifsn 14865 fprodle 16029 bpolycl 16085 lcmdvds 16642 lubss 18571 odeq 19583 ghmplusg 19879 lmhmvsca 21062 islindf4 21876 mndifsplit 22658 gsummatr01lem3 22679 gsummatr01 22681 mp2pm2mplem4 22831 elcls 23097 cnpresti 23312 cmpsublem 23423 comppfsc 23556 ptpjcn 23635 elfm3 23974 rnelfmlem 23976 nmoix 24766 caublcls 25357 ig1pdvds 26234 coeid3 26294 amgm 27049 brbtwn2 28935 colinearalg 28940 axsegconlem1 28947 ax5seglem1 28958 ax5seglem2 28959 homco1 31830 hoadddi 31832 br6 35737 lindsenlbs 37602 upixp 37716 filbcmb 37727 3dim1 39450 llni 39491 lplni 39515 lvoli 39558 cdleme42mgN 40471 mzprename 42737 infmrgelbi 42866 relexpxpmin 43707 n0p 44983 rexabslelem 45368 pimxrneun 45439 limcleqr 45600 fnlimfvre 45630 stoweidlem17 45973 stoweidlem28 45984 fourierdlem12 46075 fourierdlem41 46104 fourierdlem42 46105 fourierdlem74 46136 fourierdlem77 46139 qndenserrnopnlem 46253 issalnnd 46301 hspmbllem2 46583 issmfle 46701 smflimlem2 46728 smflimmpt 46766 smfinflem 46773 smflimsuplem7 46782 smflimsupmpt 46785 smfliminfmpt 46788 lighneallem3 47532 |
Copyright terms: Public domain | W3C validator |