| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antl3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl3 | ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantll 714 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1167 | 1 ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpl3 1194 simpl3l 1229 simpl3r 1230 simpl31 1255 simpl32 1256 simpl33 1257 rspc3ev 3589 brcogw 5807 cocan1 7225 ov6g 7510 fpr1 8233 dif1enlem 9069 dif1ennnALT 9161 cfsmolem 10161 coftr 10164 axcc3 10329 axdc4lem 10346 gruf 10702 dedekindle 11277 zdivmul 12545 cshf1 14717 cshimadifsn 14736 fprodle 15903 bpolycl 15959 lcmdvds 16519 lubss 18419 odeq 19462 ghmplusg 19758 lmhmvsca 20979 islindf4 21775 mndifsplit 22551 gsummatr01lem3 22572 gsummatr01 22574 mp2pm2mplem4 22724 elcls 22988 cnpresti 23203 cmpsublem 23314 comppfsc 23447 ptpjcn 23526 elfm3 23865 rnelfmlem 23867 nmoix 24644 caublcls 25236 ig1pdvds 26112 coeid3 26172 amgm 26928 brbtwn2 28883 colinearalg 28888 axsegconlem1 28895 ax5seglem1 28906 ax5seglem2 28907 homco1 31781 hoadddi 31783 br6 35801 lindsenlbs 37654 upixp 37768 filbcmb 37779 3dim1 39565 llni 39606 lplni 39630 lvoli 39673 cdleme42mgN 40586 mzprename 42841 infmrgelbi 42970 relexpxpmin 43809 n0p 45141 rexabslelem 45515 pimxrneun 45585 limcleqr 45741 fnlimfvre 45771 stoweidlem17 46114 stoweidlem28 46125 fourierdlem12 46216 fourierdlem41 46245 fourierdlem42 46246 fourierdlem74 46277 fourierdlem77 46280 qndenserrnopnlem 46394 issalnnd 46442 hspmbllem2 46724 issmfle 46842 smflimlem2 46869 smflimmpt 46907 smfinflem 46914 smflimsuplem7 46923 smflimsupmpt 46926 smfliminfmpt 46929 lighneallem3 47706 |
| Copyright terms: Public domain | W3C validator |