MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdim Structured version   Visualization version   GIF version

Theorem axlowdim 26310
Description: The general lower dimension axiom. Take a dimension 𝑁 greater than or equal to three. Then, there are three non-colinear points in 𝑁 dimensional space that are equidistant from 𝑁 − 1 distinct points. Derived from remarks in Tarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013.)
Assertion
Ref Expression
axlowdim (𝑁 ∈ (ℤ‘3) → ∃𝑝𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
Distinct variable group:   𝑖,𝑁,𝑝,𝑥,𝑦,𝑧

Proof of Theorem axlowdim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzuzle23 12035 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
2 0re 10378 . . . . 5 0 ∈ ℝ
32, 2axlowdimlem5 26295 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
41, 3syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
5 1re 10376 . . . . 5 1 ∈ ℝ
65, 2axlowdimlem5 26295 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
71, 6syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
82, 5axlowdimlem5 26295 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
91, 8syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
10 eqid 2778 . . . 4 (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
1110axlowdimlem15 26305 . . 3 (𝑁 ∈ (ℤ‘3) → (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁))
12 eqid 2778 . . . . . 6 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
13 eqid 2778 . . . . . 6 ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))
14 eqid 2778 . . . . . 6 ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
1512, 13, 14, 2, 2axlowdimlem17 26307 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
16 eqid 2778 . . . . . 6 ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
1712, 13, 16, 5, 2axlowdimlem17 26307 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
18 eqid 2778 . . . . . 6 ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))
1912, 13, 18, 2, 5axlowdimlem17 26307 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
20 1zzd 11760 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 1 ∈ ℤ)
21 peano2zm 11772 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
22213ad2ant2 1125 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → (𝑁 − 1) ∈ ℤ)
23 2m1e1 11508 . . . . . . . . . . . . . . 15 (2 − 1) = 1
24 2re 11449 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
25 3re 11455 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℝ
26 2lt3 11554 . . . . . . . . . . . . . . . . . . . 20 2 < 3
2724, 25, 26ltleii 10499 . . . . . . . . . . . . . . . . . . 19 2 ≤ 3
28 zre 11732 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
29 letr 10470 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
3024, 25, 29mp3an12 1524 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℝ → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
3128, 30syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
3227, 31mpani 686 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → 2 ≤ 𝑁))
3332imp 397 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁)
34333adant1 1121 . . . . . . . . . . . . . . . 16 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁)
35283ad2ant2 1125 . . . . . . . . . . . . . . . . 17 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 𝑁 ∈ ℝ)
36 lesub1 10869 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (2 ≤ 𝑁 ↔ (2 − 1) ≤ (𝑁 − 1)))
3724, 5, 36mp3an13 1525 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℝ → (2 ≤ 𝑁 ↔ (2 − 1) ≤ (𝑁 − 1)))
3835, 37syl 17 . . . . . . . . . . . . . . . 16 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → (2 ≤ 𝑁 ↔ (2 − 1) ≤ (𝑁 − 1)))
3934, 38mpbid 224 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → (2 − 1) ≤ (𝑁 − 1))
4023, 39syl5eqbrr 4922 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 1 ≤ (𝑁 − 1))
4120, 22, 403jca 1119 . . . . . . . . . . . . 13 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 1 ≤ (𝑁 − 1)))
42 eluz2 11998 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
43 eluz2 11998 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 1 ≤ (𝑁 − 1)))
4441, 42, 433imtr4i 284 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) ∈ (ℤ‘1))
45 eluzfz1 12665 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (ℤ‘1) → 1 ∈ (1...(𝑁 − 1)))
4644, 45syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 1 ∈ (1...(𝑁 − 1)))
4746adantr 474 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 1 ∈ (1...(𝑁 − 1)))
48 eqeq1 2782 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1))
49 oveq1 6929 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
5049opeq1d 4642 . . . . . . . . . . . . . 14 (𝑘 = 1 → ⟨(𝑘 + 1), 1⟩ = ⟨(1 + 1), 1⟩)
5150sneqd 4410 . . . . . . . . . . . . 13 (𝑘 = 1 → {⟨(𝑘 + 1), 1⟩} = {⟨(1 + 1), 1⟩})
5249sneqd 4410 . . . . . . . . . . . . . . 15 (𝑘 = 1 → {(𝑘 + 1)} = {(1 + 1)})
5352difeq2d 3951 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((1...𝑁) ∖ {(𝑘 + 1)}) = ((1...𝑁) ∖ {(1 + 1)}))
5453xpeq1d 5384 . . . . . . . . . . . . 13 (𝑘 = 1 → (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}) = (((1...𝑁) ∖ {(1 + 1)}) × {0}))
5551, 54uneq12d 3991 . . . . . . . . . . . 12 (𝑘 = 1 → ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) = ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0})))
5648, 55ifbieq2d 4332 . . . . . . . . . . 11 (𝑘 = 1 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))))
57 snex 5140 . . . . . . . . . . . . 13 {⟨3, -1⟩} ∈ V
58 ovex 6954 . . . . . . . . . . . . . . 15 (1...𝑁) ∈ V
59 difexg 5045 . . . . . . . . . . . . . . 15 ((1...𝑁) ∈ V → ((1...𝑁) ∖ {3}) ∈ V)
6058, 59ax-mp 5 . . . . . . . . . . . . . 14 ((1...𝑁) ∖ {3}) ∈ V
61 snex 5140 . . . . . . . . . . . . . 14 {0} ∈ V
6260, 61xpex 7240 . . . . . . . . . . . . 13 (((1...𝑁) ∖ {3}) × {0}) ∈ V
6357, 62unex 7233 . . . . . . . . . . . 12 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ V
64 snex 5140 . . . . . . . . . . . . 13 {⟨(1 + 1), 1⟩} ∈ V
65 difexg 5045 . . . . . . . . . . . . . . 15 ((1...𝑁) ∈ V → ((1...𝑁) ∖ {(1 + 1)}) ∈ V)
6658, 65ax-mp 5 . . . . . . . . . . . . . 14 ((1...𝑁) ∖ {(1 + 1)}) ∈ V
6766, 61xpex 7240 . . . . . . . . . . . . 13 (((1...𝑁) ∖ {(1 + 1)}) × {0}) ∈ V
6864, 67unex 7233 . . . . . . . . . . . 12 ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0})) ∈ V
6963, 68ifex 4355 . . . . . . . . . . 11 if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))) ∈ V
7056, 10, 69fvmpt 6542 . . . . . . . . . 10 (1 ∈ (1...(𝑁 − 1)) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))))
7147, 70syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))))
72 eqid 2778 . . . . . . . . . 10 1 = 1
7372iftruei 4314 . . . . . . . . 9 if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
7471, 73syl6eq 2830 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
7574opeq1d 4642 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
76 2eluzge1 12040 . . . . . . . . . . . . 13 2 ∈ (ℤ‘1)
77 fzss1 12697 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1)))
7876, 77ax-mp 5 . . . . . . . . . . . 12 (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))
7978sseli 3817 . . . . . . . . . . 11 (𝑖 ∈ (2...(𝑁 − 1)) → 𝑖 ∈ (1...(𝑁 − 1)))
8079adantl 475 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 𝑖 ∈ (1...(𝑁 − 1)))
81 eqeq1 2782 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑘 = 1 ↔ 𝑖 = 1))
82 oveq1 6929 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1))
8382opeq1d 4642 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → ⟨(𝑘 + 1), 1⟩ = ⟨(𝑖 + 1), 1⟩)
8483sneqd 4410 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → {⟨(𝑘 + 1), 1⟩} = {⟨(𝑖 + 1), 1⟩})
8582sneqd 4410 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → {(𝑘 + 1)} = {(𝑖 + 1)})
8685difeq2d 3951 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → ((1...𝑁) ∖ {(𝑘 + 1)}) = ((1...𝑁) ∖ {(𝑖 + 1)}))
8786xpeq1d 5384 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))
8884, 87uneq12d 3991 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))
8981, 88ifbieq2d 4332 . . . . . . . . . . 11 (𝑘 = 𝑖 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
90 snex 5140 . . . . . . . . . . . . 13 {⟨(𝑖 + 1), 1⟩} ∈ V
91 difexg 5045 . . . . . . . . . . . . . . 15 ((1...𝑁) ∈ V → ((1...𝑁) ∖ {(𝑖 + 1)}) ∈ V)
9258, 91ax-mp 5 . . . . . . . . . . . . . 14 ((1...𝑁) ∖ {(𝑖 + 1)}) ∈ V
9392, 61xpex 7240 . . . . . . . . . . . . 13 (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) ∈ V
9490, 93unex 7233 . . . . . . . . . . . 12 ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈ V
9563, 94ifex 4355 . . . . . . . . . . 11 if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) ∈ V
9689, 10, 95fvmpt 6542 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑁 − 1)) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖) = if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
9780, 96syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖) = if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
98 1lt2 11553 . . . . . . . . . . . . . . . 16 1 < 2
995, 24ltnlei 10497 . . . . . . . . . . . . . . . 16 (1 < 2 ↔ ¬ 2 ≤ 1)
10098, 99mpbi 222 . . . . . . . . . . . . . . 15 ¬ 2 ≤ 1
101100intnanr 483 . . . . . . . . . . . . . 14 ¬ (2 ≤ 1 ∧ 1 ≤ (𝑁 − 1))
102 eluzelz 12002 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
103102, 21syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) ∈ ℤ)
104 1z 11759 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
105 2z 11761 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
106 elfz 12649 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (1 ∈ (2...(𝑁 − 1)) ↔ (2 ≤ 1 ∧ 1 ≤ (𝑁 − 1))))
107104, 105, 106mp3an12 1524 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ ℤ → (1 ∈ (2...(𝑁 − 1)) ↔ (2 ≤ 1 ∧ 1 ≤ (𝑁 − 1))))
108103, 107syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → (1 ∈ (2...(𝑁 − 1)) ↔ (2 ≤ 1 ∧ 1 ≤ (𝑁 − 1))))
109101, 108mtbiri 319 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → ¬ 1 ∈ (2...(𝑁 − 1)))
110 eleq1 2847 . . . . . . . . . . . . . 14 (𝑖 = 1 → (𝑖 ∈ (2...(𝑁 − 1)) ↔ 1 ∈ (2...(𝑁 − 1))))
111110notbid 310 . . . . . . . . . . . . 13 (𝑖 = 1 → (¬ 𝑖 ∈ (2...(𝑁 − 1)) ↔ ¬ 1 ∈ (2...(𝑁 − 1))))
112109, 111syl5ibrcom 239 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → (𝑖 = 1 → ¬ 𝑖 ∈ (2...(𝑁 − 1))))
113112con2d 132 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (𝑖 ∈ (2...(𝑁 − 1)) → ¬ 𝑖 = 1))
114113imp 397 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ¬ 𝑖 = 1)
115114iffalsed 4318 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))
11697, 115eqtrd 2814 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))
117116opeq1d 4642 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
11875, 117breq12d 4899 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
11974opeq1d 4642 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
120116opeq1d 4642 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
121119, 120breq12d 4899 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
12246, 70syl 17 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))))
123122, 73syl6eq 2830 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
124123opeq1d 4642 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
125124adantr 474 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
126116opeq1d 4642 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
127125, 126breq12d 4899 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
128118, 121, 1273anbi123d 1509 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ (⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)))
12915, 17, 19, 128mpbir3and 1399 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
130129ralrimiva 3148 . . 3 (𝑁 ∈ (ℤ‘3) → ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
13114, 16, 18axlowdimlem6 26296 . . . 4 (𝑁 ∈ (ℤ‘2) → ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
1321, 131syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
133 opeq2 4637 . . . . . . . 8 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
134 opeq2 4637 . . . . . . . 8 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
135133, 134breq12d 4899 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
1361353anbi1d 1513 . . . . . 6 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
137136ralbidv 3168 . . . . 5 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
138 breq1 4889 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑥 Btwn ⟨𝑦, 𝑧⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩))
139 opeq2 4637 . . . . . . . 8 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑧, 𝑥⟩ = ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
140139breq2d 4898 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑦 Btwn ⟨𝑧, 𝑥⟩ ↔ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
141 opeq1 4636 . . . . . . . 8 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑥, 𝑦⟩ = ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)
142141breq2d 4898 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑧 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩))
143138, 140, 1423orbi123d 1508 . . . . . 6 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)))
144143notbid 310 . . . . 5 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩) ↔ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)))
145137, 1443anbi23d 1512 . . . 4 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩))))
146 opeq2 4637 . . . . . . . 8 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
147 opeq2 4637 . . . . . . . 8 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
148146, 147breq12d 4899 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
1491483anbi2d 1514 . . . . . 6 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
150149ralbidv 3168 . . . . 5 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
151 opeq1 4636 . . . . . . . 8 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑦, 𝑧⟩ = ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩)
152151breq2d 4898 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩))
153 breq1 4889 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
154 opeq2 4637 . . . . . . . 8 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩ = ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
155154breq2d 4898 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩ ↔ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
156152, 153, 1553orbi123d 1508 . . . . . 6 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
157156notbid 310 . . . . 5 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩) ↔ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
158150, 1573anbi23d 1512 . . . 4 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))))
159 opeq2 4637 . . . . . . . 8 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
160 opeq2 4637 . . . . . . . 8 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
161159, 160breq12d 4899 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
1621613anbi3d 1515 . . . . . 6 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ((⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)))
163162ralbidv 3168 . . . . 5 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)))
164 opeq2 4637 . . . . . . . 8 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ = ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
165164breq2d 4898 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
166 opeq1 4636 . . . . . . . 8 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
167166breq2d 4898 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
168 breq1 4889 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
169165, 167, 1683orbi123d 1508 . . . . . 6 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
170169notbid 310 . . . . 5 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
171163, 1703anbi23d 1512 . . . 4 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))))
172145, 158, 171rspc3ev 3528 . . 3 (((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁)) ∧ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
1734, 7, 9, 11, 130, 132, 172syl33anc 1453 . 2 (𝑁 ∈ (ℤ‘3) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
174 ovex 6954 . . . 4 (1...(𝑁 − 1)) ∈ V
175174mptex 6758 . . 3 (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) ∈ V
176 f1eq1 6346 . . . . . 6 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ↔ (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁)))
177 fveq1 6445 . . . . . . . . . 10 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (𝑝‘1) = ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1))
178177opeq1d 4642 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝‘1), 𝑥⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩)
179 fveq1 6445 . . . . . . . . . 10 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (𝑝𝑖) = ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖))
180179opeq1d 4642 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝𝑖), 𝑥⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩)
181178, 180breq12d 4899 . . . . . . . 8 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩))
182177opeq1d 4642 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝‘1), 𝑦⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩)
183179opeq1d 4642 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝𝑖), 𝑦⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩)
184182, 183breq12d 4899 . . . . . . . 8 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩))
185177opeq1d 4642 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝‘1), 𝑧⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩)
186179opeq1d 4642 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝𝑖), 𝑧⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)
187185, 186breq12d 4899 . . . . . . . 8 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩))
188181, 184, 1873anbi123d 1509 . . . . . . 7 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ((⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ↔ (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
189188ralbidv 3168 . . . . . 6 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
190176, 1893anbi12d 1510 . . . . 5 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ((𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))))
191190rexbidv 3237 . . . 4 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) ↔ ∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))))
1921912rexbidv 3242 . . 3 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))))
193175, 192spcev 3502 . 2 (∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) → ∃𝑝𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
194173, 193syl 17 1 (𝑁 ∈ (ℤ‘3) → ∃𝑝𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3o 1070  w3a 1071   = wceq 1601  wex 1823  wcel 2107  wral 3090  wrex 3091  Vcvv 3398  cdif 3789  cun 3790  wss 3792  ifcif 4307  {csn 4398  {cpr 4400  cop 4404   class class class wbr 4886  cmpt 4965   × cxp 5353  1-1wf1 6132  cfv 6135  (class class class)co 6922  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   < clt 10411  cle 10412  cmin 10606  -cneg 10607  2c2 11430  3c3 11431  cz 11728  cuz 11992  ...cfz 12643  𝔼cee 26237   Btwn cbtwn 26238  Cgrccgr 26239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-ee 26240  df-btwn 26241  df-cgr 26242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator