MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdim Structured version   Visualization version   GIF version

Theorem axlowdim 28219
Description: The general lower dimension axiom. Take a dimension 𝑁 greater than or equal to three. Then, there are three non-colinear points in 𝑁 dimensional space that are equidistant from 𝑁 − 1 distinct points. Derived from remarks in Tarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013.)
Assertion
Ref Expression
axlowdim (𝑁 ∈ (ℤ‘3) → ∃𝑝𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
Distinct variable group:   𝑖,𝑁,𝑝,𝑥,𝑦,𝑧

Proof of Theorem axlowdim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzuzle23 12873 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
2 0re 11216 . . . . 5 0 ∈ ℝ
32, 2axlowdimlem5 28204 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
41, 3syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
5 1re 11214 . . . . 5 1 ∈ ℝ
65, 2axlowdimlem5 28204 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
71, 6syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
82, 5axlowdimlem5 28204 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
91, 8syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
10 eqid 2733 . . . 4 (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
1110axlowdimlem15 28214 . . 3 (𝑁 ∈ (ℤ‘3) → (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁))
12 eqid 2733 . . . . . 6 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
13 eqid 2733 . . . . . 6 ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))
14 eqid 2733 . . . . . 6 ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
1512, 13, 14, 2, 2axlowdimlem17 28216 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
16 eqid 2733 . . . . . 6 ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
1712, 13, 16, 5, 2axlowdimlem17 28216 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
18 eqid 2733 . . . . . 6 ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))
1912, 13, 18, 2, 5axlowdimlem17 28216 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
20 1zzd 12593 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 1 ∈ ℤ)
21 peano2zm 12605 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
22213ad2ant2 1135 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → (𝑁 − 1) ∈ ℤ)
23 2m1e1 12338 . . . . . . . . . . . . . . 15 (2 − 1) = 1
24 2re 12286 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
25 3re 12292 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℝ
26 2lt3 12384 . . . . . . . . . . . . . . . . . . . 20 2 < 3
2724, 25, 26ltleii 11337 . . . . . . . . . . . . . . . . . . 19 2 ≤ 3
28 zre 12562 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
29 letr 11308 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
3024, 25, 28, 29mp3an12i 1466 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
3127, 30mpani 695 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → 2 ≤ 𝑁))
3231imp 408 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁)
33323adant1 1131 . . . . . . . . . . . . . . . 16 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁)
34283ad2ant2 1135 . . . . . . . . . . . . . . . . 17 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 𝑁 ∈ ℝ)
35 lesub1 11708 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (2 ≤ 𝑁 ↔ (2 − 1) ≤ (𝑁 − 1)))
3624, 5, 35mp3an13 1453 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℝ → (2 ≤ 𝑁 ↔ (2 − 1) ≤ (𝑁 − 1)))
3734, 36syl 17 . . . . . . . . . . . . . . . 16 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → (2 ≤ 𝑁 ↔ (2 − 1) ≤ (𝑁 − 1)))
3833, 37mpbid 231 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → (2 − 1) ≤ (𝑁 − 1))
3923, 38eqbrtrrid 5185 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 1 ≤ (𝑁 − 1))
4020, 22, 393jca 1129 . . . . . . . . . . . . 13 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 1 ≤ (𝑁 − 1)))
41 eluz2 12828 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
42 eluz2 12828 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 1 ≤ (𝑁 − 1)))
4340, 41, 423imtr4i 292 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) ∈ (ℤ‘1))
44 eluzfz1 13508 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (ℤ‘1) → 1 ∈ (1...(𝑁 − 1)))
4543, 44syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 1 ∈ (1...(𝑁 − 1)))
4645adantr 482 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 1 ∈ (1...(𝑁 − 1)))
47 eqeq1 2737 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1))
48 oveq1 7416 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
4948opeq1d 4880 . . . . . . . . . . . . . 14 (𝑘 = 1 → ⟨(𝑘 + 1), 1⟩ = ⟨(1 + 1), 1⟩)
5049sneqd 4641 . . . . . . . . . . . . 13 (𝑘 = 1 → {⟨(𝑘 + 1), 1⟩} = {⟨(1 + 1), 1⟩})
5148sneqd 4641 . . . . . . . . . . . . . . 15 (𝑘 = 1 → {(𝑘 + 1)} = {(1 + 1)})
5251difeq2d 4123 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((1...𝑁) ∖ {(𝑘 + 1)}) = ((1...𝑁) ∖ {(1 + 1)}))
5352xpeq1d 5706 . . . . . . . . . . . . 13 (𝑘 = 1 → (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}) = (((1...𝑁) ∖ {(1 + 1)}) × {0}))
5450, 53uneq12d 4165 . . . . . . . . . . . 12 (𝑘 = 1 → ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) = ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0})))
5547, 54ifbieq2d 4555 . . . . . . . . . . 11 (𝑘 = 1 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))))
56 snex 5432 . . . . . . . . . . . . 13 {⟨3, -1⟩} ∈ V
57 ovex 7442 . . . . . . . . . . . . . . 15 (1...𝑁) ∈ V
5857difexi 5329 . . . . . . . . . . . . . 14 ((1...𝑁) ∖ {3}) ∈ V
59 snex 5432 . . . . . . . . . . . . . 14 {0} ∈ V
6058, 59xpex 7740 . . . . . . . . . . . . 13 (((1...𝑁) ∖ {3}) × {0}) ∈ V
6156, 60unex 7733 . . . . . . . . . . . 12 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ V
62 snex 5432 . . . . . . . . . . . . 13 {⟨(1 + 1), 1⟩} ∈ V
6357difexi 5329 . . . . . . . . . . . . . 14 ((1...𝑁) ∖ {(1 + 1)}) ∈ V
6463, 59xpex 7740 . . . . . . . . . . . . 13 (((1...𝑁) ∖ {(1 + 1)}) × {0}) ∈ V
6562, 64unex 7733 . . . . . . . . . . . 12 ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0})) ∈ V
6661, 65ifex 4579 . . . . . . . . . . 11 if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))) ∈ V
6755, 10, 66fvmpt 6999 . . . . . . . . . 10 (1 ∈ (1...(𝑁 − 1)) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))))
6846, 67syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))))
69 eqid 2733 . . . . . . . . . 10 1 = 1
7069iftruei 4536 . . . . . . . . 9 if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
7168, 70eqtrdi 2789 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
7271opeq1d 4880 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
73 2eluzge1 12878 . . . . . . . . . . . . 13 2 ∈ (ℤ‘1)
74 fzss1 13540 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1)))
7573, 74ax-mp 5 . . . . . . . . . . . 12 (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))
7675sseli 3979 . . . . . . . . . . 11 (𝑖 ∈ (2...(𝑁 − 1)) → 𝑖 ∈ (1...(𝑁 − 1)))
7776adantl 483 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 𝑖 ∈ (1...(𝑁 − 1)))
78 eqeq1 2737 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑘 = 1 ↔ 𝑖 = 1))
79 oveq1 7416 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1))
8079opeq1d 4880 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → ⟨(𝑘 + 1), 1⟩ = ⟨(𝑖 + 1), 1⟩)
8180sneqd 4641 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → {⟨(𝑘 + 1), 1⟩} = {⟨(𝑖 + 1), 1⟩})
8279sneqd 4641 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → {(𝑘 + 1)} = {(𝑖 + 1)})
8382difeq2d 4123 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → ((1...𝑁) ∖ {(𝑘 + 1)}) = ((1...𝑁) ∖ {(𝑖 + 1)}))
8483xpeq1d 5706 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))
8581, 84uneq12d 4165 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))
8678, 85ifbieq2d 4555 . . . . . . . . . . 11 (𝑘 = 𝑖 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
87 snex 5432 . . . . . . . . . . . . 13 {⟨(𝑖 + 1), 1⟩} ∈ V
8857difexi 5329 . . . . . . . . . . . . . 14 ((1...𝑁) ∖ {(𝑖 + 1)}) ∈ V
8988, 59xpex 7740 . . . . . . . . . . . . 13 (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) ∈ V
9087, 89unex 7733 . . . . . . . . . . . 12 ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈ V
9161, 90ifex 4579 . . . . . . . . . . 11 if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) ∈ V
9286, 10, 91fvmpt 6999 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑁 − 1)) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖) = if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
9377, 92syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖) = if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
94 1lt2 12383 . . . . . . . . . . . . . . . 16 1 < 2
955, 24ltnlei 11335 . . . . . . . . . . . . . . . 16 (1 < 2 ↔ ¬ 2 ≤ 1)
9694, 95mpbi 229 . . . . . . . . . . . . . . 15 ¬ 2 ≤ 1
9796intnanr 489 . . . . . . . . . . . . . 14 ¬ (2 ≤ 1 ∧ 1 ≤ (𝑁 − 1))
98 1z 12592 . . . . . . . . . . . . . . 15 1 ∈ ℤ
99 2z 12594 . . . . . . . . . . . . . . 15 2 ∈ ℤ
100 eluzelz 12832 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
101100, 21syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) ∈ ℤ)
102 elfz 13490 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (1 ∈ (2...(𝑁 − 1)) ↔ (2 ≤ 1 ∧ 1 ≤ (𝑁 − 1))))
10398, 99, 101, 102mp3an12i 1466 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → (1 ∈ (2...(𝑁 − 1)) ↔ (2 ≤ 1 ∧ 1 ≤ (𝑁 − 1))))
10497, 103mtbiri 327 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → ¬ 1 ∈ (2...(𝑁 − 1)))
105 eleq1 2822 . . . . . . . . . . . . . 14 (𝑖 = 1 → (𝑖 ∈ (2...(𝑁 − 1)) ↔ 1 ∈ (2...(𝑁 − 1))))
106105notbid 318 . . . . . . . . . . . . 13 (𝑖 = 1 → (¬ 𝑖 ∈ (2...(𝑁 − 1)) ↔ ¬ 1 ∈ (2...(𝑁 − 1))))
107104, 106syl5ibrcom 246 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → (𝑖 = 1 → ¬ 𝑖 ∈ (2...(𝑁 − 1))))
108107con2d 134 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (𝑖 ∈ (2...(𝑁 − 1)) → ¬ 𝑖 = 1))
109108imp 408 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ¬ 𝑖 = 1)
110109iffalsed 4540 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))
11193, 110eqtrd 2773 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))
112111opeq1d 4880 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
11372, 112breq12d 5162 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
11471opeq1d 4880 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
115111opeq1d 4880 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
116114, 115breq12d 5162 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
11745, 67syl 17 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))))
118117, 70eqtrdi 2789 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
119118opeq1d 4880 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
120119adantr 482 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
121111opeq1d 4880 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
122120, 121breq12d 5162 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
123113, 116, 1223anbi123d 1437 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ (⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)))
12415, 17, 19, 123mpbir3and 1343 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
125124ralrimiva 3147 . . 3 (𝑁 ∈ (ℤ‘3) → ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
12614, 16, 18axlowdimlem6 28205 . . . 4 (𝑁 ∈ (ℤ‘2) → ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
1271, 126syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
128 opeq2 4875 . . . . . . . 8 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
129 opeq2 4875 . . . . . . . 8 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
130128, 129breq12d 5162 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
1311303anbi1d 1441 . . . . . 6 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
132131ralbidv 3178 . . . . 5 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
133 breq1 5152 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑥 Btwn ⟨𝑦, 𝑧⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩))
134 opeq2 4875 . . . . . . . 8 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑧, 𝑥⟩ = ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
135134breq2d 5161 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑦 Btwn ⟨𝑧, 𝑥⟩ ↔ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
136 opeq1 4874 . . . . . . . 8 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑥, 𝑦⟩ = ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)
137136breq2d 5161 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑧 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩))
138133, 135, 1373orbi123d 1436 . . . . . 6 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)))
139138notbid 318 . . . . 5 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩) ↔ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)))
140132, 1393anbi23d 1440 . . . 4 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩))))
141 opeq2 4875 . . . . . . . 8 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
142 opeq2 4875 . . . . . . . 8 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
143141, 142breq12d 5162 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
1441433anbi2d 1442 . . . . . 6 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
145144ralbidv 3178 . . . . 5 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
146 opeq1 4874 . . . . . . . 8 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑦, 𝑧⟩ = ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩)
147146breq2d 5161 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩))
148 breq1 5152 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
149 opeq2 4875 . . . . . . . 8 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩ = ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
150149breq2d 5161 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩ ↔ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
151147, 148, 1503orbi123d 1436 . . . . . 6 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
152151notbid 318 . . . . 5 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩) ↔ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
153145, 1523anbi23d 1440 . . . 4 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))))
154 opeq2 4875 . . . . . . . 8 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
155 opeq2 4875 . . . . . . . 8 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
156154, 155breq12d 5162 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
1571563anbi3d 1443 . . . . . 6 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ((⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)))
158157ralbidv 3178 . . . . 5 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)))
159 opeq2 4875 . . . . . . . 8 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ = ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
160159breq2d 5161 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
161 opeq1 4874 . . . . . . . 8 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
162161breq2d 5161 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
163 breq1 5152 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
164160, 162, 1633orbi123d 1436 . . . . . 6 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
165164notbid 318 . . . . 5 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
166158, 1653anbi23d 1440 . . . 4 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))))
167140, 153, 166rspc3ev 3629 . . 3 (((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁)) ∧ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
1684, 7, 9, 11, 125, 127, 167syl33anc 1386 . 2 (𝑁 ∈ (ℤ‘3) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
169 ovex 7442 . . . 4 (1...(𝑁 − 1)) ∈ V
170169mptex 7225 . . 3 (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) ∈ V
171 f1eq1 6783 . . . . . 6 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ↔ (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁)))
172 fveq1 6891 . . . . . . . . . 10 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (𝑝‘1) = ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1))
173172opeq1d 4880 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝‘1), 𝑥⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩)
174 fveq1 6891 . . . . . . . . . 10 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (𝑝𝑖) = ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖))
175174opeq1d 4880 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝𝑖), 𝑥⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩)
176173, 175breq12d 5162 . . . . . . . 8 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩))
177172opeq1d 4880 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝‘1), 𝑦⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩)
178174opeq1d 4880 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝𝑖), 𝑦⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩)
179177, 178breq12d 5162 . . . . . . . 8 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩))
180172opeq1d 4880 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝‘1), 𝑧⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩)
181174opeq1d 4880 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝𝑖), 𝑧⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)
182180, 181breq12d 5162 . . . . . . . 8 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩))
183176, 179, 1823anbi123d 1437 . . . . . . 7 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ((⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ↔ (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
184183ralbidv 3178 . . . . . 6 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
185171, 1843anbi12d 1438 . . . . 5 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ((𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))))
186185rexbidv 3179 . . . 4 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) ↔ ∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))))
1871862rexbidv 3220 . . 3 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))))
188170, 187spcev 3597 . 2 (∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) → ∃𝑝𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
189168, 188syl 17 1 (𝑁 ∈ (ℤ‘3) → ∃𝑝𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3o 1087  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wral 3062  wrex 3071  cdif 3946  cun 3947  wss 3949  ifcif 4529  {csn 4629  {cpr 4631  cop 4635   class class class wbr 5149  cmpt 5232   × cxp 5675  1-1wf1 6541  cfv 6544  (class class class)co 7409  cr 11109  0cc0 11110  1c1 11111   + caddc 11113   < clt 11248  cle 11249  cmin 11444  -cneg 11445  2c2 12267  3c3 12268  cz 12558  cuz 12822  ...cfz 13484  𝔼cee 28146   Btwn cbtwn 28147  Cgrccgr 28148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-icc 13331  df-fz 13485  df-fzo 13628  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-ee 28149  df-btwn 28150  df-cgr 28151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator