Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplni2 Structured version   Visualization version   GIF version

Theorem lplni2 39531
Description: The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
lplni2.l = (le‘𝐾)
lplni2.j = (join‘𝐾)
lplni2.a 𝐴 = (Atoms‘𝐾)
lplni2.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplni2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)

Proof of Theorem lplni2
Dummy variables 𝑟 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → (𝑄𝐴𝑅𝐴𝑆𝐴))
2 simp3l 1202 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑄𝑅)
3 simp3r 1203 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ¬ 𝑆 (𝑄 𝑅))
4 eqidd 2730 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))
5 neeq1 2987 . . . . 5 (𝑞 = 𝑄 → (𝑞𝑟𝑄𝑟))
6 oveq1 7394 . . . . . . 7 (𝑞 = 𝑄 → (𝑞 𝑟) = (𝑄 𝑟))
76breq2d 5119 . . . . . 6 (𝑞 = 𝑄 → (𝑠 (𝑞 𝑟) ↔ 𝑠 (𝑄 𝑟)))
87notbid 318 . . . . 5 (𝑞 = 𝑄 → (¬ 𝑠 (𝑞 𝑟) ↔ ¬ 𝑠 (𝑄 𝑟)))
96oveq1d 7402 . . . . . 6 (𝑞 = 𝑄 → ((𝑞 𝑟) 𝑠) = ((𝑄 𝑟) 𝑠))
109eqeq2d 2740 . . . . 5 (𝑞 = 𝑄 → (((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠) ↔ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑟) 𝑠)))
115, 8, 103anbi123d 1438 . . . 4 (𝑞 = 𝑄 → ((𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠)) ↔ (𝑄𝑟 ∧ ¬ 𝑠 (𝑄 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑟) 𝑠))))
12 neeq2 2988 . . . . 5 (𝑟 = 𝑅 → (𝑄𝑟𝑄𝑅))
13 oveq2 7395 . . . . . . 7 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
1413breq2d 5119 . . . . . 6 (𝑟 = 𝑅 → (𝑠 (𝑄 𝑟) ↔ 𝑠 (𝑄 𝑅)))
1514notbid 318 . . . . 5 (𝑟 = 𝑅 → (¬ 𝑠 (𝑄 𝑟) ↔ ¬ 𝑠 (𝑄 𝑅)))
1613oveq1d 7402 . . . . . 6 (𝑟 = 𝑅 → ((𝑄 𝑟) 𝑠) = ((𝑄 𝑅) 𝑠))
1716eqeq2d 2740 . . . . 5 (𝑟 = 𝑅 → (((𝑄 𝑅) 𝑆) = ((𝑄 𝑟) 𝑠) ↔ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑠)))
1812, 15, 173anbi123d 1438 . . . 4 (𝑟 = 𝑅 → ((𝑄𝑟 ∧ ¬ 𝑠 (𝑄 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑟) 𝑠)) ↔ (𝑄𝑅 ∧ ¬ 𝑠 (𝑄 𝑅) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑠))))
19 breq1 5110 . . . . . 6 (𝑠 = 𝑆 → (𝑠 (𝑄 𝑅) ↔ 𝑆 (𝑄 𝑅)))
2019notbid 318 . . . . 5 (𝑠 = 𝑆 → (¬ 𝑠 (𝑄 𝑅) ↔ ¬ 𝑆 (𝑄 𝑅)))
21 oveq2 7395 . . . . . 6 (𝑠 = 𝑆 → ((𝑄 𝑅) 𝑠) = ((𝑄 𝑅) 𝑆))
2221eqeq2d 2740 . . . . 5 (𝑠 = 𝑆 → (((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑠) ↔ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆)))
2320, 223anbi23d 1441 . . . 4 (𝑠 = 𝑆 → ((𝑄𝑅 ∧ ¬ 𝑠 (𝑄 𝑅) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑠)) ↔ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))))
2411, 18, 23rspc3ev 3605 . . 3 (((𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠)))
251, 2, 3, 4, 24syl13anc 1374 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠)))
26 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝐾 ∈ HL)
27 hllat 39356 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
28273ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝐾 ∈ Lat)
29 simp21 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑄𝐴)
30 simp22 1208 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑅𝐴)
31 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
32 lplni2.j . . . . . 6 = (join‘𝐾)
33 lplni2.a . . . . . 6 𝐴 = (Atoms‘𝐾)
3431, 32, 33hlatjcl 39360 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
3526, 29, 30, 34syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → (𝑄 𝑅) ∈ (Base‘𝐾))
36 simp23 1209 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑆𝐴)
3731, 33atbase 39282 . . . . 5 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
3836, 37syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑆 ∈ (Base‘𝐾))
3931, 32latjcl 18398 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾))
4028, 35, 38, 39syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾))
41 lplni2.l . . . 4 = (le‘𝐾)
42 lplni2.p . . . 4 𝑃 = (LPlanes‘𝐾)
4331, 41, 32, 33, 42islpln5 39529 . . 3 ((𝐾 ∈ HL ∧ ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠))))
4426, 40, 43syl2anc 584 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠))))
4525, 44mpbird 257 1 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  Latclat 18390  Atomscatm 39256  HLchlt 39343  LPlanesclpl 39486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493
This theorem is referenced by:  islpln2a  39542  2llnjaN  39560  lvolnle3at  39576  dalem42  39708  cdleme16aN  40253
  Copyright terms: Public domain W3C validator