Step | Hyp | Ref
| Expression |
1 | | simp2 1139 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) |
2 | | simp3l 1203 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑄 ≠ 𝑅) |
3 | | simp3r 1204 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) |
4 | | eqidd 2738 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑆)) |
5 | | neeq1 3003 |
. . . . 5
⊢ (𝑞 = 𝑄 → (𝑞 ≠ 𝑟 ↔ 𝑄 ≠ 𝑟)) |
6 | | oveq1 7220 |
. . . . . . 7
⊢ (𝑞 = 𝑄 → (𝑞 ∨ 𝑟) = (𝑄 ∨ 𝑟)) |
7 | 6 | breq2d 5065 |
. . . . . 6
⊢ (𝑞 = 𝑄 → (𝑠 ≤ (𝑞 ∨ 𝑟) ↔ 𝑠 ≤ (𝑄 ∨ 𝑟))) |
8 | 7 | notbid 321 |
. . . . 5
⊢ (𝑞 = 𝑄 → (¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ↔ ¬ 𝑠 ≤ (𝑄 ∨ 𝑟))) |
9 | 6 | oveq1d 7228 |
. . . . . 6
⊢ (𝑞 = 𝑄 → ((𝑞 ∨ 𝑟) ∨ 𝑠) = ((𝑄 ∨ 𝑟) ∨ 𝑠)) |
10 | 9 | eqeq2d 2748 |
. . . . 5
⊢ (𝑞 = 𝑄 → (((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑞 ∨ 𝑟) ∨ 𝑠) ↔ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑟) ∨ 𝑠))) |
11 | 5, 8, 10 | 3anbi123d 1438 |
. . . 4
⊢ (𝑞 = 𝑄 → ((𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑞 ∨ 𝑟) ∨ 𝑠)) ↔ (𝑄 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑄 ∨ 𝑟) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑟) ∨ 𝑠)))) |
12 | | neeq2 3004 |
. . . . 5
⊢ (𝑟 = 𝑅 → (𝑄 ≠ 𝑟 ↔ 𝑄 ≠ 𝑅)) |
13 | | oveq2 7221 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑅)) |
14 | 13 | breq2d 5065 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (𝑠 ≤ (𝑄 ∨ 𝑟) ↔ 𝑠 ≤ (𝑄 ∨ 𝑅))) |
15 | 14 | notbid 321 |
. . . . 5
⊢ (𝑟 = 𝑅 → (¬ 𝑠 ≤ (𝑄 ∨ 𝑟) ↔ ¬ 𝑠 ≤ (𝑄 ∨ 𝑅))) |
16 | 13 | oveq1d 7228 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ((𝑄 ∨ 𝑟) ∨ 𝑠) = ((𝑄 ∨ 𝑅) ∨ 𝑠)) |
17 | 16 | eqeq2d 2748 |
. . . . 5
⊢ (𝑟 = 𝑅 → (((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑟) ∨ 𝑠) ↔ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑠))) |
18 | 12, 15, 17 | 3anbi123d 1438 |
. . . 4
⊢ (𝑟 = 𝑅 → ((𝑄 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑄 ∨ 𝑟) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑟) ∨ 𝑠)) ↔ (𝑄 ≠ 𝑅 ∧ ¬ 𝑠 ≤ (𝑄 ∨ 𝑅) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑠)))) |
19 | | breq1 5056 |
. . . . . 6
⊢ (𝑠 = 𝑆 → (𝑠 ≤ (𝑄 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
20 | 19 | notbid 321 |
. . . . 5
⊢ (𝑠 = 𝑆 → (¬ 𝑠 ≤ (𝑄 ∨ 𝑅) ↔ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
21 | | oveq2 7221 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((𝑄 ∨ 𝑅) ∨ 𝑠) = ((𝑄 ∨ 𝑅) ∨ 𝑆)) |
22 | 21 | eqeq2d 2748 |
. . . . 5
⊢ (𝑠 = 𝑆 → (((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑠) ↔ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑆))) |
23 | 20, 22 | 3anbi23d 1441 |
. . . 4
⊢ (𝑠 = 𝑆 → ((𝑄 ≠ 𝑅 ∧ ¬ 𝑠 ≤ (𝑄 ∨ 𝑅) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑠)) ↔ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑆)))) |
24 | 11, 18, 23 | rspc3ev 3551 |
. . 3
⊢ (((𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑞 ∨ 𝑟) ∨ 𝑠))) |
25 | 1, 2, 3, 4, 24 | syl13anc 1374 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑞 ∨ 𝑟) ∨ 𝑠))) |
26 | | simp1 1138 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝐾 ∈ HL) |
27 | | hllat 37114 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
28 | 27 | 3ad2ant1 1135 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝐾 ∈ Lat) |
29 | | simp21 1208 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑄 ∈ 𝐴) |
30 | | simp22 1209 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑅 ∈ 𝐴) |
31 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
32 | | lplni2.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
33 | | lplni2.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
34 | 31, 32, 33 | hlatjcl 37118 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
35 | 26, 29, 30, 34 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
36 | | simp23 1210 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ 𝐴) |
37 | 31, 33 | atbase 37040 |
. . . . 5
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
38 | 36, 37 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ (Base‘𝐾)) |
39 | 31, 32 | latjcl 17945 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ (Base‘𝐾)) |
40 | 28, 35, 38, 39 | syl3anc 1373 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ (Base‘𝐾)) |
41 | | lplni2.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
42 | | lplni2.p |
. . . 4
⊢ 𝑃 = (LPlanes‘𝐾) |
43 | 31, 41, 32, 33, 42 | islpln5 37286 |
. . 3
⊢ ((𝐾 ∈ HL ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ (Base‘𝐾)) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑞 ∨ 𝑟) ∨ 𝑠)))) |
44 | 26, 40, 43 | syl2anc 587 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) = ((𝑞 ∨ 𝑟) ∨ 𝑠)))) |
45 | 25, 44 | mpbird 260 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃) |