Step | Hyp | Ref
| Expression |
1 | | simp2 1134 |
. . 3
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β (π β π΄ β§ π
β π΄ β§ π β π΄)) |
2 | | simp3l 1198 |
. . 3
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β π β π
) |
3 | | simp3r 1199 |
. . 3
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β Β¬ π β€ (π β¨ π
)) |
4 | | eqidd 2727 |
. . 3
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β ((π β¨ π
) β¨ π) = ((π β¨ π
) β¨ π)) |
5 | | neeq1 2997 |
. . . . 5
β’ (π = π β (π β π β π β π)) |
6 | | oveq1 7411 |
. . . . . . 7
β’ (π = π β (π β¨ π) = (π β¨ π)) |
7 | 6 | breq2d 5153 |
. . . . . 6
β’ (π = π β (π β€ (π β¨ π) β π β€ (π β¨ π))) |
8 | 7 | notbid 318 |
. . . . 5
β’ (π = π β (Β¬ π β€ (π β¨ π) β Β¬ π β€ (π β¨ π))) |
9 | 6 | oveq1d 7419 |
. . . . . 6
β’ (π = π β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π )) |
10 | 9 | eqeq2d 2737 |
. . . . 5
β’ (π = π β (((π β¨ π
) β¨ π) = ((π β¨ π) β¨ π ) β ((π β¨ π
) β¨ π) = ((π β¨ π) β¨ π ))) |
11 | 5, 8, 10 | 3anbi123d 1432 |
. . . 4
β’ (π = π β ((π β π β§ Β¬ π β€ (π β¨ π) β§ ((π β¨ π
) β¨ π) = ((π β¨ π) β¨ π )) β (π β π β§ Β¬ π β€ (π β¨ π) β§ ((π β¨ π
) β¨ π) = ((π β¨ π) β¨ π )))) |
12 | | neeq2 2998 |
. . . . 5
β’ (π = π
β (π β π β π β π
)) |
13 | | oveq2 7412 |
. . . . . . 7
β’ (π = π
β (π β¨ π) = (π β¨ π
)) |
14 | 13 | breq2d 5153 |
. . . . . 6
β’ (π = π
β (π β€ (π β¨ π) β π β€ (π β¨ π
))) |
15 | 14 | notbid 318 |
. . . . 5
β’ (π = π
β (Β¬ π β€ (π β¨ π) β Β¬ π β€ (π β¨ π
))) |
16 | 13 | oveq1d 7419 |
. . . . . 6
β’ (π = π
β ((π β¨ π) β¨ π ) = ((π β¨ π
) β¨ π )) |
17 | 16 | eqeq2d 2737 |
. . . . 5
β’ (π = π
β (((π β¨ π
) β¨ π) = ((π β¨ π) β¨ π ) β ((π β¨ π
) β¨ π) = ((π β¨ π
) β¨ π ))) |
18 | 12, 15, 17 | 3anbi123d 1432 |
. . . 4
β’ (π = π
β ((π β π β§ Β¬ π β€ (π β¨ π) β§ ((π β¨ π
) β¨ π) = ((π β¨ π) β¨ π )) β (π β π
β§ Β¬ π β€ (π β¨ π
) β§ ((π β¨ π
) β¨ π) = ((π β¨ π
) β¨ π )))) |
19 | | breq1 5144 |
. . . . . 6
β’ (π = π β (π β€ (π β¨ π
) β π β€ (π β¨ π
))) |
20 | 19 | notbid 318 |
. . . . 5
β’ (π = π β (Β¬ π β€ (π β¨ π
) β Β¬ π β€ (π β¨ π
))) |
21 | | oveq2 7412 |
. . . . . 6
β’ (π = π β ((π β¨ π
) β¨ π ) = ((π β¨ π
) β¨ π)) |
22 | 21 | eqeq2d 2737 |
. . . . 5
β’ (π = π β (((π β¨ π
) β¨ π) = ((π β¨ π
) β¨ π ) β ((π β¨ π
) β¨ π) = ((π β¨ π
) β¨ π))) |
23 | 20, 22 | 3anbi23d 1435 |
. . . 4
β’ (π = π β ((π β π
β§ Β¬ π β€ (π β¨ π
) β§ ((π β¨ π
) β¨ π) = ((π β¨ π
) β¨ π )) β (π β π
β§ Β¬ π β€ (π β¨ π
) β§ ((π β¨ π
) β¨ π) = ((π β¨ π
) β¨ π)))) |
24 | 11, 18, 23 | rspc3ev 3623 |
. . 3
β’ (((π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
) β§ ((π β¨ π
) β¨ π) = ((π β¨ π
) β¨ π))) β βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ ((π β¨ π
) β¨ π) = ((π β¨ π) β¨ π ))) |
25 | 1, 2, 3, 4, 24 | syl13anc 1369 |
. 2
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ ((π β¨ π
) β¨ π) = ((π β¨ π) β¨ π ))) |
26 | | simp1 1133 |
. . 3
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β πΎ β HL) |
27 | | hllat 38744 |
. . . . 5
β’ (πΎ β HL β πΎ β Lat) |
28 | 27 | 3ad2ant1 1130 |
. . . 4
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β πΎ β Lat) |
29 | | simp21 1203 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β π β π΄) |
30 | | simp22 1204 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β π
β π΄) |
31 | | eqid 2726 |
. . . . . 6
β’
(BaseβπΎ) =
(BaseβπΎ) |
32 | | lplni2.j |
. . . . . 6
β’ β¨ =
(joinβπΎ) |
33 | | lplni2.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
34 | 31, 32, 33 | hlatjcl 38748 |
. . . . 5
β’ ((πΎ β HL β§ π β π΄ β§ π
β π΄) β (π β¨ π
) β (BaseβπΎ)) |
35 | 26, 29, 30, 34 | syl3anc 1368 |
. . . 4
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β (π β¨ π
) β (BaseβπΎ)) |
36 | | simp23 1205 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β π β π΄) |
37 | 31, 33 | atbase 38670 |
. . . . 5
β’ (π β π΄ β π β (BaseβπΎ)) |
38 | 36, 37 | syl 17 |
. . . 4
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β π β (BaseβπΎ)) |
39 | 31, 32 | latjcl 18402 |
. . . 4
β’ ((πΎ β Lat β§ (π β¨ π
) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ π
) β¨ π) β (BaseβπΎ)) |
40 | 28, 35, 38, 39 | syl3anc 1368 |
. . 3
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β ((π β¨ π
) β¨ π) β (BaseβπΎ)) |
41 | | lplni2.l |
. . . 4
β’ β€ =
(leβπΎ) |
42 | | lplni2.p |
. . . 4
β’ π = (LPlanesβπΎ) |
43 | 31, 41, 32, 33, 42 | islpln5 38917 |
. . 3
β’ ((πΎ β HL β§ ((π β¨ π
) β¨ π) β (BaseβπΎ)) β (((π β¨ π
) β¨ π) β π β βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ ((π β¨ π
) β¨ π) = ((π β¨ π) β¨ π )))) |
44 | 26, 40, 43 | syl2anc 583 |
. 2
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β (((π β¨ π
) β¨ π) β π β βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ ((π β¨ π
) β¨ π) = ((π β¨ π) β¨ π )))) |
45 | 25, 44 | mpbird 257 |
1
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ (π β π
β§ Β¬ π β€ (π β¨ π
))) β ((π β¨ π
) β¨ π) β π) |