Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplni2 Structured version   Visualization version   GIF version

Theorem lplni2 39540
Description: The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
lplni2.l = (le‘𝐾)
lplni2.j = (join‘𝐾)
lplni2.a 𝐴 = (Atoms‘𝐾)
lplni2.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplni2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)

Proof of Theorem lplni2
Dummy variables 𝑟 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → (𝑄𝐴𝑅𝐴𝑆𝐴))
2 simp3l 1201 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑄𝑅)
3 simp3r 1202 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ¬ 𝑆 (𝑄 𝑅))
4 eqidd 2737 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))
5 neeq1 3002 . . . . 5 (𝑞 = 𝑄 → (𝑞𝑟𝑄𝑟))
6 oveq1 7439 . . . . . . 7 (𝑞 = 𝑄 → (𝑞 𝑟) = (𝑄 𝑟))
76breq2d 5154 . . . . . 6 (𝑞 = 𝑄 → (𝑠 (𝑞 𝑟) ↔ 𝑠 (𝑄 𝑟)))
87notbid 318 . . . . 5 (𝑞 = 𝑄 → (¬ 𝑠 (𝑞 𝑟) ↔ ¬ 𝑠 (𝑄 𝑟)))
96oveq1d 7447 . . . . . 6 (𝑞 = 𝑄 → ((𝑞 𝑟) 𝑠) = ((𝑄 𝑟) 𝑠))
109eqeq2d 2747 . . . . 5 (𝑞 = 𝑄 → (((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠) ↔ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑟) 𝑠)))
115, 8, 103anbi123d 1437 . . . 4 (𝑞 = 𝑄 → ((𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠)) ↔ (𝑄𝑟 ∧ ¬ 𝑠 (𝑄 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑟) 𝑠))))
12 neeq2 3003 . . . . 5 (𝑟 = 𝑅 → (𝑄𝑟𝑄𝑅))
13 oveq2 7440 . . . . . . 7 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
1413breq2d 5154 . . . . . 6 (𝑟 = 𝑅 → (𝑠 (𝑄 𝑟) ↔ 𝑠 (𝑄 𝑅)))
1514notbid 318 . . . . 5 (𝑟 = 𝑅 → (¬ 𝑠 (𝑄 𝑟) ↔ ¬ 𝑠 (𝑄 𝑅)))
1613oveq1d 7447 . . . . . 6 (𝑟 = 𝑅 → ((𝑄 𝑟) 𝑠) = ((𝑄 𝑅) 𝑠))
1716eqeq2d 2747 . . . . 5 (𝑟 = 𝑅 → (((𝑄 𝑅) 𝑆) = ((𝑄 𝑟) 𝑠) ↔ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑠)))
1812, 15, 173anbi123d 1437 . . . 4 (𝑟 = 𝑅 → ((𝑄𝑟 ∧ ¬ 𝑠 (𝑄 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑟) 𝑠)) ↔ (𝑄𝑅 ∧ ¬ 𝑠 (𝑄 𝑅) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑠))))
19 breq1 5145 . . . . . 6 (𝑠 = 𝑆 → (𝑠 (𝑄 𝑅) ↔ 𝑆 (𝑄 𝑅)))
2019notbid 318 . . . . 5 (𝑠 = 𝑆 → (¬ 𝑠 (𝑄 𝑅) ↔ ¬ 𝑆 (𝑄 𝑅)))
21 oveq2 7440 . . . . . 6 (𝑠 = 𝑆 → ((𝑄 𝑅) 𝑠) = ((𝑄 𝑅) 𝑆))
2221eqeq2d 2747 . . . . 5 (𝑠 = 𝑆 → (((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑠) ↔ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆)))
2320, 223anbi23d 1440 . . . 4 (𝑠 = 𝑆 → ((𝑄𝑅 ∧ ¬ 𝑠 (𝑄 𝑅) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑠)) ↔ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))))
2411, 18, 23rspc3ev 3638 . . 3 (((𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠)))
251, 2, 3, 4, 24syl13anc 1373 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠)))
26 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝐾 ∈ HL)
27 hllat 39365 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
28273ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝐾 ∈ Lat)
29 simp21 1206 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑄𝐴)
30 simp22 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑅𝐴)
31 eqid 2736 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
32 lplni2.j . . . . . 6 = (join‘𝐾)
33 lplni2.a . . . . . 6 𝐴 = (Atoms‘𝐾)
3431, 32, 33hlatjcl 39369 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
3526, 29, 30, 34syl3anc 1372 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → (𝑄 𝑅) ∈ (Base‘𝐾))
36 simp23 1208 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑆𝐴)
3731, 33atbase 39291 . . . . 5 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
3836, 37syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑆 ∈ (Base‘𝐾))
3931, 32latjcl 18485 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾))
4028, 35, 38, 39syl3anc 1372 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾))
41 lplni2.l . . . 4 = (le‘𝐾)
42 lplni2.p . . . 4 𝑃 = (LPlanes‘𝐾)
4331, 41, 32, 33, 42islpln5 39538 . . 3 ((𝐾 ∈ HL ∧ ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠))))
4426, 40, 43syl2anc 584 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠))))
4525, 44mpbird 257 1 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wrex 3069   class class class wbr 5142  cfv 6560  (class class class)co 7432  Basecbs 17248  lecple 17305  joincjn 18358  Latclat 18477  Atomscatm 39265  HLchlt 39352  LPlanesclpl 39495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-lat 18478  df-clat 18545  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-llines 39501  df-lplanes 39502
This theorem is referenced by:  islpln2a  39551  2llnjaN  39569  lvolnle3at  39585  dalem42  39717  cdleme16aN  40262
  Copyright terms: Public domain W3C validator