Proof of Theorem pmltpclem1
Step | Hyp | Ref
| Expression |
1 | | pmltpclem1.1 |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
2 | | pmltpclem1.2 |
. 2
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
3 | | pmltpclem1.3 |
. 2
⊢ (𝜑 → 𝐶 ∈ 𝑆) |
4 | | pmltpclem1.4 |
. 2
⊢ (𝜑 → 𝐴 < 𝐵) |
5 | | pmltpclem1.5 |
. 2
⊢ (𝜑 → 𝐵 < 𝐶) |
6 | | pmltpclem1.6 |
. 2
⊢ (𝜑 → (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝐶) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝐶)))) |
7 | | breq1 5073 |
. . . 4
⊢ (𝑎 = 𝐴 → (𝑎 < 𝑏 ↔ 𝐴 < 𝑏)) |
8 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) |
9 | 8 | breq1d 5080 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎) < (𝐹‘𝑏) ↔ (𝐹‘𝐴) < (𝐹‘𝑏))) |
10 | 9 | anbi1d 629 |
. . . . 5
⊢ (𝑎 = 𝐴 → (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ↔ ((𝐹‘𝐴) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)))) |
11 | 8 | breq2d 5082 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝐹‘𝑏) < (𝐹‘𝑎) ↔ (𝐹‘𝑏) < (𝐹‘𝐴))) |
12 | 11 | anbi1d 629 |
. . . . 5
⊢ (𝑎 = 𝐴 → (((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)) ↔ ((𝐹‘𝑏) < (𝐹‘𝐴) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))) |
13 | 10, 12 | orbi12d 915 |
. . . 4
⊢ (𝑎 = 𝐴 → ((((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))) ↔ (((𝐹‘𝐴) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝐴) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |
14 | 7, 13 | 3anbi13d 1436 |
. . 3
⊢ (𝑎 = 𝐴 → ((𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))) ↔ (𝐴 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝐴) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝐴) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))))) |
15 | | breq2 5074 |
. . . 4
⊢ (𝑏 = 𝐵 → (𝐴 < 𝑏 ↔ 𝐴 < 𝐵)) |
16 | | breq1 5073 |
. . . 4
⊢ (𝑏 = 𝐵 → (𝑏 < 𝑐 ↔ 𝐵 < 𝑐)) |
17 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) |
18 | 17 | breq2d 5082 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐹‘𝐴) < (𝐹‘𝑏) ↔ (𝐹‘𝐴) < (𝐹‘𝐵))) |
19 | 17 | breq2d 5082 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐹‘𝑐) < (𝐹‘𝑏) ↔ (𝐹‘𝑐) < (𝐹‘𝐵))) |
20 | 18, 19 | anbi12d 630 |
. . . . 5
⊢ (𝑏 = 𝐵 → (((𝐹‘𝐴) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ↔ ((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝑐) < (𝐹‘𝐵)))) |
21 | 17 | breq1d 5080 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐹‘𝑏) < (𝐹‘𝐴) ↔ (𝐹‘𝐵) < (𝐹‘𝐴))) |
22 | 17 | breq1d 5080 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐹‘𝑏) < (𝐹‘𝑐) ↔ (𝐹‘𝐵) < (𝐹‘𝑐))) |
23 | 21, 22 | anbi12d 630 |
. . . . 5
⊢ (𝑏 = 𝐵 → (((𝐹‘𝑏) < (𝐹‘𝐴) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)) ↔ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝑐)))) |
24 | 20, 23 | orbi12d 915 |
. . . 4
⊢ (𝑏 = 𝐵 → ((((𝐹‘𝐴) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝐴) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))) ↔ (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝑐) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝑐))))) |
25 | 15, 16, 24 | 3anbi123d 1434 |
. . 3
⊢ (𝑏 = 𝐵 → ((𝐴 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝐴) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝐴) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))) ↔ (𝐴 < 𝐵 ∧ 𝐵 < 𝑐 ∧ (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝑐) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝑐)))))) |
26 | | breq2 5074 |
. . . 4
⊢ (𝑐 = 𝐶 → (𝐵 < 𝑐 ↔ 𝐵 < 𝐶)) |
27 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (𝐹‘𝑐) = (𝐹‘𝐶)) |
28 | 27 | breq1d 5080 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((𝐹‘𝑐) < (𝐹‘𝐵) ↔ (𝐹‘𝐶) < (𝐹‘𝐵))) |
29 | 28 | anbi2d 628 |
. . . . 5
⊢ (𝑐 = 𝐶 → (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝑐) < (𝐹‘𝐵)) ↔ ((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝐶) < (𝐹‘𝐵)))) |
30 | 27 | breq2d 5082 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((𝐹‘𝐵) < (𝐹‘𝑐) ↔ (𝐹‘𝐵) < (𝐹‘𝐶))) |
31 | 30 | anbi2d 628 |
. . . . 5
⊢ (𝑐 = 𝐶 → (((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝑐)) ↔ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝐶)))) |
32 | 29, 31 | orbi12d 915 |
. . . 4
⊢ (𝑐 = 𝐶 → ((((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝑐) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝑐))) ↔ (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝐶) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝐶))))) |
33 | 26, 32 | 3anbi23d 1437 |
. . 3
⊢ (𝑐 = 𝐶 → ((𝐴 < 𝐵 ∧ 𝐵 < 𝑐 ∧ (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝑐) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝑐)))) ↔ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ∧ (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝐶) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝐶)))))) |
34 | 14, 25, 33 | rspc3ev 3566 |
. 2
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ∧ (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝐶) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝐶))))) → ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |
35 | 1, 2, 3, 4, 5, 6, 34 | syl33anc 1383 |
1
⊢ (𝜑 → ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |