Proof of Theorem pmltpclem1
| Step | Hyp | Ref
| Expression |
| 1 | | pmltpclem1.1 |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 2 | | pmltpclem1.2 |
. 2
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| 3 | | pmltpclem1.3 |
. 2
⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| 4 | | pmltpclem1.4 |
. 2
⊢ (𝜑 → 𝐴 < 𝐵) |
| 5 | | pmltpclem1.5 |
. 2
⊢ (𝜑 → 𝐵 < 𝐶) |
| 6 | | pmltpclem1.6 |
. 2
⊢ (𝜑 → (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝐶) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝐶)))) |
| 7 | | breq1 5127 |
. . . 4
⊢ (𝑎 = 𝐴 → (𝑎 < 𝑏 ↔ 𝐴 < 𝑏)) |
| 8 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) |
| 9 | 8 | breq1d 5134 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎) < (𝐹‘𝑏) ↔ (𝐹‘𝐴) < (𝐹‘𝑏))) |
| 10 | 9 | anbi1d 631 |
. . . . 5
⊢ (𝑎 = 𝐴 → (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ↔ ((𝐹‘𝐴) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)))) |
| 11 | 8 | breq2d 5136 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝐹‘𝑏) < (𝐹‘𝑎) ↔ (𝐹‘𝑏) < (𝐹‘𝐴))) |
| 12 | 11 | anbi1d 631 |
. . . . 5
⊢ (𝑎 = 𝐴 → (((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)) ↔ ((𝐹‘𝑏) < (𝐹‘𝐴) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))) |
| 13 | 10, 12 | orbi12d 918 |
. . . 4
⊢ (𝑎 = 𝐴 → ((((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))) ↔ (((𝐹‘𝐴) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝐴) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |
| 14 | 7, 13 | 3anbi13d 1440 |
. . 3
⊢ (𝑎 = 𝐴 → ((𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))) ↔ (𝐴 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝐴) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝐴) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))))) |
| 15 | | breq2 5128 |
. . . 4
⊢ (𝑏 = 𝐵 → (𝐴 < 𝑏 ↔ 𝐴 < 𝐵)) |
| 16 | | breq1 5127 |
. . . 4
⊢ (𝑏 = 𝐵 → (𝑏 < 𝑐 ↔ 𝐵 < 𝑐)) |
| 17 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) |
| 18 | 17 | breq2d 5136 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐹‘𝐴) < (𝐹‘𝑏) ↔ (𝐹‘𝐴) < (𝐹‘𝐵))) |
| 19 | 17 | breq2d 5136 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐹‘𝑐) < (𝐹‘𝑏) ↔ (𝐹‘𝑐) < (𝐹‘𝐵))) |
| 20 | 18, 19 | anbi12d 632 |
. . . . 5
⊢ (𝑏 = 𝐵 → (((𝐹‘𝐴) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ↔ ((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝑐) < (𝐹‘𝐵)))) |
| 21 | 17 | breq1d 5134 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐹‘𝑏) < (𝐹‘𝐴) ↔ (𝐹‘𝐵) < (𝐹‘𝐴))) |
| 22 | 17 | breq1d 5134 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐹‘𝑏) < (𝐹‘𝑐) ↔ (𝐹‘𝐵) < (𝐹‘𝑐))) |
| 23 | 21, 22 | anbi12d 632 |
. . . . 5
⊢ (𝑏 = 𝐵 → (((𝐹‘𝑏) < (𝐹‘𝐴) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)) ↔ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝑐)))) |
| 24 | 20, 23 | orbi12d 918 |
. . . 4
⊢ (𝑏 = 𝐵 → ((((𝐹‘𝐴) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝐴) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))) ↔ (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝑐) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝑐))))) |
| 25 | 15, 16, 24 | 3anbi123d 1438 |
. . 3
⊢ (𝑏 = 𝐵 → ((𝐴 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝐴) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝐴) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))) ↔ (𝐴 < 𝐵 ∧ 𝐵 < 𝑐 ∧ (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝑐) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝑐)))))) |
| 26 | | breq2 5128 |
. . . 4
⊢ (𝑐 = 𝐶 → (𝐵 < 𝑐 ↔ 𝐵 < 𝐶)) |
| 27 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (𝐹‘𝑐) = (𝐹‘𝐶)) |
| 28 | 27 | breq1d 5134 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((𝐹‘𝑐) < (𝐹‘𝐵) ↔ (𝐹‘𝐶) < (𝐹‘𝐵))) |
| 29 | 28 | anbi2d 630 |
. . . . 5
⊢ (𝑐 = 𝐶 → (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝑐) < (𝐹‘𝐵)) ↔ ((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝐶) < (𝐹‘𝐵)))) |
| 30 | 27 | breq2d 5136 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((𝐹‘𝐵) < (𝐹‘𝑐) ↔ (𝐹‘𝐵) < (𝐹‘𝐶))) |
| 31 | 30 | anbi2d 630 |
. . . . 5
⊢ (𝑐 = 𝐶 → (((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝑐)) ↔ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝐶)))) |
| 32 | 29, 31 | orbi12d 918 |
. . . 4
⊢ (𝑐 = 𝐶 → ((((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝑐) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝑐))) ↔ (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝐶) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝐶))))) |
| 33 | 26, 32 | 3anbi23d 1441 |
. . 3
⊢ (𝑐 = 𝐶 → ((𝐴 < 𝐵 ∧ 𝐵 < 𝑐 ∧ (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝑐) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝑐)))) ↔ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ∧ (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝐶) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝐶)))))) |
| 34 | 14, 25, 33 | rspc3ev 3623 |
. 2
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ∧ (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝐶) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝐶))))) → ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |
| 35 | 1, 2, 3, 4, 5, 6, 34 | syl33anc 1387 |
1
⊢ (𝜑 → ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |