| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbr | Structured version Visualization version GIF version | ||
| Description: Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcbr | ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbr123 5197 | . 2 ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶) | |
| 2 | csbconstg 3918 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
| 3 | csbconstg 3918 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
| 4 | 2, 3 | breq12d 5156 | . . 3 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶)) |
| 5 | br0 5192 | . . . . 5 ⊢ ¬ ⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶 | |
| 6 | csbprc 4409 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑅 = ∅) | |
| 7 | 6 | breqd 5154 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶)) |
| 8 | 5, 7 | mtbiri 327 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶) |
| 9 | br0 5192 | . . . . 5 ⊢ ¬ 𝐵∅𝐶 | |
| 10 | 6 | breqd 5154 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝐵⦋𝐴 / 𝑥⦌𝑅𝐶 ↔ 𝐵∅𝐶)) |
| 11 | 9, 10 | mtbiri 327 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) |
| 12 | 8, 11 | 2falsed 376 | . . 3 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶)) |
| 13 | 4, 12 | pm2.61i 182 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) |
| 14 | 1, 13 | bitri 275 | 1 ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2108 Vcvv 3480 [wsbc 3788 ⦋csb 3899 ∅c0 4333 class class class wbr 5143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 |
| This theorem is referenced by: csbcnv 5894 |
| Copyright terms: Public domain | W3C validator |