Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcbr | Structured version Visualization version GIF version |
Description: Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
sbcbr | ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr123 5132 | . 2 ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶) | |
2 | csbconstg 3855 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | csbconstg 3855 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
4 | 2, 3 | breq12d 5091 | . . 3 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶)) |
5 | br0 5127 | . . . . 5 ⊢ ¬ ⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶 | |
6 | csbprc 4345 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑅 = ∅) | |
7 | 6 | breqd 5089 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶)) |
8 | 5, 7 | mtbiri 326 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶) |
9 | br0 5127 | . . . . 5 ⊢ ¬ 𝐵∅𝐶 | |
10 | 6 | breqd 5089 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝐵⦋𝐴 / 𝑥⦌𝑅𝐶 ↔ 𝐵∅𝐶)) |
11 | 9, 10 | mtbiri 326 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) |
12 | 8, 11 | 2falsed 376 | . . 3 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶)) |
13 | 4, 12 | pm2.61i 182 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) |
14 | 1, 13 | bitri 274 | 1 ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2109 Vcvv 3430 [wsbc 3719 ⦋csb 3836 ∅c0 4261 class class class wbr 5078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 |
This theorem is referenced by: csbcnv 5789 |
Copyright terms: Public domain | W3C validator |