Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcbr12g | Structured version Visualization version GIF version |
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
Ref | Expression |
---|---|
sbcbr12g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr123 5135 | . 2 ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶) | |
2 | csbconstg 3856 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑅 = 𝑅) | |
3 | 2 | breqd 5092 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) |
4 | 1, 3 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2104 [wsbc 3721 ⦋csb 3837 class class class wbr 5081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 |
This theorem is referenced by: sbcbr1g 5138 sbcbr2g 5139 cdlemk39s 39153 eubrdm 44774 |
Copyright terms: Public domain | W3C validator |