MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbr123 Structured version   Visualization version   GIF version

Theorem sbcbr123 5128
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 22-Aug-2018.)
Assertion
Ref Expression
sbcbr123 ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶)

Proof of Theorem sbcbr123
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3726 . 2 ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 ∈ V)
2 br0 5123 . . . 4 ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶
3 csbprc 4340 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝑅 = ∅)
43breqd 5085 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
52, 4mtbiri 327 . . 3 𝐴 ∈ V → ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶)
65con4i 114 . 2 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶𝐴 ∈ V)
7 dfsbcq2 3719 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝐵𝑅𝐶[𝐴 / 𝑥]𝐵𝑅𝐶))
8 csbeq1 3835 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
9 csbeq1 3835 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝑅 = 𝐴 / 𝑥𝑅)
10 csbeq1 3835 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
118, 9, 10breq123d 5088 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))
12 nfcsb1v 3857 . . . . 5 𝑥𝑦 / 𝑥𝐵
13 nfcsb1v 3857 . . . . 5 𝑥𝑦 / 𝑥𝑅
14 nfcsb1v 3857 . . . . 5 𝑥𝑦 / 𝑥𝐶
1512, 13, 14nfbr 5121 . . . 4 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶
16 csbeq1a 3846 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
17 csbeq1a 3846 . . . . 5 (𝑥 = 𝑦𝑅 = 𝑦 / 𝑥𝑅)
18 csbeq1a 3846 . . . . 5 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1916, 17, 18breq123d 5088 . . . 4 (𝑥 = 𝑦 → (𝐵𝑅𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶))
2015, 19sbiev 2309 . . 3 ([𝑦 / 𝑥]𝐵𝑅𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶)
217, 11, 20vtoclbg 3507 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))
221, 6, 21pm5.21nii 380 1 ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  [wsb 2067  wcel 2106  Vcvv 3432  [wsbc 3716  csb 3832  c0 4256   class class class wbr 5074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075
This theorem is referenced by:  sbcbr  5129  sbcbr12g  5130  csbcnvgALT  5793  sbcfung  6458  csbfv12  6817  relowlpssretop  35535
  Copyright terms: Public domain W3C validator