MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbr123 Structured version   Visualization version   GIF version

Theorem sbcbr123 5149
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 22-Aug-2018.)
Assertion
Ref Expression
sbcbr123 ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶)

Proof of Theorem sbcbr123
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3754 . 2 ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 ∈ V)
2 br0 5144 . . . 4 ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶
3 csbprc 4362 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝑅 = ∅)
43breqd 5106 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
52, 4mtbiri 327 . . 3 𝐴 ∈ V → ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶)
65con4i 114 . 2 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶𝐴 ∈ V)
7 dfsbcq2 3747 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝐵𝑅𝐶[𝐴 / 𝑥]𝐵𝑅𝐶))
8 csbeq1 3856 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
9 csbeq1 3856 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝑅 = 𝐴 / 𝑥𝑅)
10 csbeq1 3856 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
118, 9, 10breq123d 5109 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))
12 nfcsb1v 3877 . . . . 5 𝑥𝑦 / 𝑥𝐵
13 nfcsb1v 3877 . . . . 5 𝑥𝑦 / 𝑥𝑅
14 nfcsb1v 3877 . . . . 5 𝑥𝑦 / 𝑥𝐶
1512, 13, 14nfbr 5142 . . . 4 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶
16 csbeq1a 3867 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
17 csbeq1a 3867 . . . . 5 (𝑥 = 𝑦𝑅 = 𝑦 / 𝑥𝑅)
18 csbeq1a 3867 . . . . 5 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1916, 17, 18breq123d 5109 . . . 4 (𝑥 = 𝑦 → (𝐵𝑅𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶))
2015, 19sbiev 2313 . . 3 ([𝑦 / 𝑥]𝐵𝑅𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶)
217, 11, 20vtoclbg 3514 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))
221, 6, 21pm5.21nii 378 1 ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  [wsb 2065  wcel 2109  Vcvv 3438  [wsbc 3744  csb 3853  c0 4286   class class class wbr 5095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096
This theorem is referenced by:  sbcbr  5150  sbcbr12g  5151  csbcnvgALT  5831  sbcfung  6510  csbfv12  6872  relowlpssretop  37340
  Copyright terms: Public domain W3C validator