MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbr1g Structured version   Visualization version   GIF version

Theorem sbcbr1g 5205
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
Assertion
Ref Expression
sbcbr1g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐶))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcbr1g
StepHypRef Expression
1 sbcbr12g 5204 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶))
2 csbconstg 3927 . . 3 (𝐴𝑉𝐴 / 𝑥𝐶 = 𝐶)
32breq2d 5160 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵𝑅𝐶))
41, 3bitrd 279 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  [wsbc 3791  csb 3908   class class class wbr 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149
This theorem is referenced by:  iscard4  43523  frege124d  43751  frege70  43923  frege92  43945  frege118  43971
  Copyright terms: Public domain W3C validator