MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbr1g Structured version   Visualization version   GIF version

Theorem sbcbr1g 5205
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
Assertion
Ref Expression
sbcbr1g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐶))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcbr1g
StepHypRef Expression
1 sbcbr12g 5204 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶))
2 csbconstg 3912 . . 3 (𝐴𝑉𝐴 / 𝑥𝐶 = 𝐶)
32breq2d 5160 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵𝑅𝐶))
41, 3bitrd 278 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  [wsbc 3777  csb 3893   class class class wbr 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149
This theorem is referenced by:  iscard4  42274  frege124d  42502  frege70  42674  frege92  42696  frege118  42722
  Copyright terms: Public domain W3C validator