MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcfuccl Structured version   Visualization version   GIF version

Theorem catcfuccl 18080
Description: The category of categories for a weak universe is closed under the functor category operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.)
Hypotheses
Ref Expression
catcfuccl.c 𝐶 = (CatCat‘𝑈)
catcfuccl.b 𝐵 = (Base‘𝐶)
catcfuccl.o 𝑄 = (𝑋 FuncCat 𝑌)
catcfuccl.u (𝜑𝑈 ∈ WUni)
catcfuccl.1 (𝜑 → ω ∈ 𝑈)
catcfuccl.x (𝜑𝑋𝐵)
catcfuccl.y (𝜑𝑌𝐵)
Assertion
Ref Expression
catcfuccl (𝜑𝑄𝐵)

Proof of Theorem catcfuccl
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcfuccl.o . . . . 5 𝑄 = (𝑋 FuncCat 𝑌)
2 eqid 2729 . . . . 5 (𝑋 Func 𝑌) = (𝑋 Func 𝑌)
3 eqid 2729 . . . . 5 (𝑋 Nat 𝑌) = (𝑋 Nat 𝑌)
4 eqid 2729 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
5 eqid 2729 . . . . 5 (comp‘𝑌) = (comp‘𝑌)
6 catcfuccl.x . . . . . . 7 (𝜑𝑋𝐵)
7 catcfuccl.c . . . . . . . 8 𝐶 = (CatCat‘𝑈)
8 catcfuccl.b . . . . . . . 8 𝐵 = (Base‘𝐶)
9 catcfuccl.u . . . . . . . 8 (𝜑𝑈 ∈ WUni)
107, 8, 9catcbas 18063 . . . . . . 7 (𝜑𝐵 = (𝑈 ∩ Cat))
116, 10eleqtrd 2830 . . . . . 6 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
1211elin2d 4168 . . . . 5 (𝜑𝑋 ∈ Cat)
13 catcfuccl.y . . . . . . 7 (𝜑𝑌𝐵)
1413, 10eleqtrd 2830 . . . . . 6 (𝜑𝑌 ∈ (𝑈 ∩ Cat))
1514elin2d 4168 . . . . 5 (𝜑𝑌 ∈ Cat)
16 eqidd 2730 . . . . 5 (𝜑 → (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))))
171, 2, 3, 4, 5, 12, 15, 16fucval 17923 . . . 4 (𝜑𝑄 = {⟨(Base‘ndx), (𝑋 Func 𝑌)⟩, ⟨(Hom ‘ndx), (𝑋 Nat 𝑌)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))⟩})
18 baseid 17182 . . . . . . 7 Base = Slot (Base‘ndx)
19 catcfuccl.1 . . . . . . . 8 (𝜑 → ω ∈ 𝑈)
209, 19wunndx 17165 . . . . . . 7 (𝜑 → ndx ∈ 𝑈)
2118, 9, 20wunstr 17158 . . . . . 6 (𝜑 → (Base‘ndx) ∈ 𝑈)
227, 8, 9, 6catcbascl 18074 . . . . . . 7 (𝜑𝑋𝑈)
237, 8, 9, 13catcbascl 18074 . . . . . . 7 (𝜑𝑌𝑈)
249, 22, 23wunfunc 17863 . . . . . 6 (𝜑 → (𝑋 Func 𝑌) ∈ 𝑈)
259, 21, 24wunop 10675 . . . . 5 (𝜑 → ⟨(Base‘ndx), (𝑋 Func 𝑌)⟩ ∈ 𝑈)
26 homid 17375 . . . . . . 7 Hom = Slot (Hom ‘ndx)
2726, 9, 20wunstr 17158 . . . . . 6 (𝜑 → (Hom ‘ndx) ∈ 𝑈)
289, 22, 23wunnat 17921 . . . . . 6 (𝜑 → (𝑋 Nat 𝑌) ∈ 𝑈)
299, 27, 28wunop 10675 . . . . 5 (𝜑 → ⟨(Hom ‘ndx), (𝑋 Nat 𝑌)⟩ ∈ 𝑈)
30 ccoid 17377 . . . . . . 7 comp = Slot (comp‘ndx)
3130, 9, 20wunstr 17158 . . . . . 6 (𝜑 → (comp‘ndx) ∈ 𝑈)
329, 24, 24wunxp 10677 . . . . . . . 8 (𝜑 → ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) ∈ 𝑈)
339, 32, 24wunxp 10677 . . . . . . 7 (𝜑 → (((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌)) ∈ 𝑈)
347, 8, 9, 13catcccocl 18078 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑌) ∈ 𝑈)
359, 34wunrn 10682 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑌) ∈ 𝑈)
369, 35wununi 10659 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑌) ∈ 𝑈)
379, 36wunrn 10682 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑌) ∈ 𝑈)
389, 37wununi 10659 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑌) ∈ 𝑈)
399, 38wunpw 10660 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑌) ∈ 𝑈)
407, 8, 9, 6catcbaselcl 18076 . . . . . . . . 9 (𝜑 → (Base‘𝑋) ∈ 𝑈)
419, 39, 40wunmap 10679 . . . . . . . 8 (𝜑 → (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∈ 𝑈)
429, 28wunrn 10682 . . . . . . . . . 10 (𝜑 → ran (𝑋 Nat 𝑌) ∈ 𝑈)
439, 42wununi 10659 . . . . . . . . 9 (𝜑 ran (𝑋 Nat 𝑌) ∈ 𝑈)
449, 43, 43wunxp 10677 . . . . . . . 8 (𝜑 → ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)) ∈ 𝑈)
459, 41, 44wunpm 10678 . . . . . . 7 (𝜑 → ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ∈ 𝑈)
46 fvex 6871 . . . . . . . . . . 11 (1st𝑣) ∈ V
47 fvex 6871 . . . . . . . . . . . . . 14 (2nd𝑣) ∈ V
48 ovex 7420 . . . . . . . . . . . . . . . . 17 (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∈ V
49 ovex 7420 . . . . . . . . . . . . . . . . . . . 20 (𝑋 Nat 𝑌) ∈ V
5049rnex 7886 . . . . . . . . . . . . . . . . . . 19 ran (𝑋 Nat 𝑌) ∈ V
5150uniex 7717 . . . . . . . . . . . . . . . . . 18 ran (𝑋 Nat 𝑌) ∈ V
5251, 51xpex 7729 . . . . . . . . . . . . . . . . 17 ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)) ∈ V
53 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) = (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))
54 ovssunirn 7423 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ⊆ ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))
55 ovssunirn 7423 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran (comp‘𝑌)
56 rnss 5903 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran (comp‘𝑌) → ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌))
57 uniss 4879 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌) → ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌))
5855, 56, 57mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . 24 ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌)
5954, 58sstri 3956 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ⊆ ran ran (comp‘𝑌)
60 ovex 7420 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ V
6160elpw 4567 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ 𝒫 ran ran (comp‘𝑌) ↔ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ⊆ ran ran (comp‘𝑌))
6259, 61mpbir 231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ 𝒫 ran ran (comp‘𝑌)
6362a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (Base‘𝑋) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ 𝒫 ran ran (comp‘𝑌))
6453, 63fmpti 7084 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))):(Base‘𝑋)⟶𝒫 ran ran (comp‘𝑌)
65 fvex 6871 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (comp‘𝑌) ∈ V
6665rnex 7886 . . . . . . . . . . . . . . . . . . . . . . . . 25 ran (comp‘𝑌) ∈ V
6766uniex 7717 . . . . . . . . . . . . . . . . . . . . . . . 24 ran (comp‘𝑌) ∈ V
6867rnex 7886 . . . . . . . . . . . . . . . . . . . . . . 23 ran ran (comp‘𝑌) ∈ V
6968uniex 7717 . . . . . . . . . . . . . . . . . . . . . 22 ran ran (comp‘𝑌) ∈ V
7069pwex 5335 . . . . . . . . . . . . . . . . . . . . 21 𝒫 ran ran (comp‘𝑌) ∈ V
71 fvex 6871 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑋) ∈ V
7270, 71elmap 8844 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↔ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))):(Base‘𝑋)⟶𝒫 ran ran (comp‘𝑌))
7364, 72mpbir 231 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋))
7473rgen2w 3049 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ (𝑔(𝑋 Nat 𝑌))∀𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔)(𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋))
75 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))
7675fmpo 8047 . . . . . . . . . . . . . . . . . 18 (∀𝑏 ∈ (𝑔(𝑋 Nat 𝑌))∀𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔)(𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↔ (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))):((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔))⟶(𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)))
7774, 76mpbi 230 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))):((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔))⟶(𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋))
78 ovssunirn 7423 . . . . . . . . . . . . . . . . . 18 (𝑔(𝑋 Nat 𝑌)) ⊆ ran (𝑋 Nat 𝑌)
79 ovssunirn 7423 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋 Nat 𝑌)𝑔) ⊆ ran (𝑋 Nat 𝑌)
80 xpss12 5653 . . . . . . . . . . . . . . . . . 18 (((𝑔(𝑋 Nat 𝑌)) ⊆ ran (𝑋 Nat 𝑌) ∧ (𝑓(𝑋 Nat 𝑌)𝑔) ⊆ ran (𝑋 Nat 𝑌)) → ((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔)) ⊆ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
8178, 79, 80mp2an 692 . . . . . . . . . . . . . . . . 17 ((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔)) ⊆ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))
82 elpm2r 8818 . . . . . . . . . . . . . . . . 17 ((((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∈ V ∧ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)) ∈ V) ∧ ((𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))):((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔))⟶(𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∧ ((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔)) ⊆ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))) → (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
8348, 52, 77, 81, 82mp4an 693 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
8483sbcth 3768 . . . . . . . . . . . . . . 15 ((2nd𝑣) ∈ V → [(2nd𝑣) / 𝑔](𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
85 sbcel1g 4379 . . . . . . . . . . . . . . 15 ((2nd𝑣) ∈ V → ([(2nd𝑣) / 𝑔](𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ↔ (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))))
8684, 85mpbid 232 . . . . . . . . . . . . . 14 ((2nd𝑣) ∈ V → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
8747, 86ax-mp 5 . . . . . . . . . . . . 13 (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
8887sbcth 3768 . . . . . . . . . . . 12 ((1st𝑣) ∈ V → [(1st𝑣) / 𝑓](2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
89 sbcel1g 4379 . . . . . . . . . . . 12 ((1st𝑣) ∈ V → ([(1st𝑣) / 𝑓](2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ↔ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))))
9088, 89mpbid 232 . . . . . . . . . . 11 ((1st𝑣) ∈ V → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
9146, 90ax-mp 5 . . . . . . . . . 10 (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
9291rgen2w 3049 . . . . . . . . 9 𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌))∀ ∈ (𝑋 Func 𝑌)(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
93 eqid 2729 . . . . . . . . . 10 (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))
9493fmpo 8047 . . . . . . . . 9 (∀𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌))∀ ∈ (𝑋 Func 𝑌)(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ↔ (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))):(((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌))⟶((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
9592, 94mpbi 230 . . . . . . . 8 (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))):(((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌))⟶((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
9695a1i 11 . . . . . . 7 (𝜑 → (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))):(((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌))⟶((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
979, 33, 45, 96wunf 10680 . . . . . 6 (𝜑 → (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))) ∈ 𝑈)
989, 31, 97wunop 10675 . . . . 5 (𝜑 → ⟨(comp‘ndx), (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))⟩ ∈ 𝑈)
999, 25, 29, 98wuntp 10664 . . . 4 (𝜑 → {⟨(Base‘ndx), (𝑋 Func 𝑌)⟩, ⟨(Hom ‘ndx), (𝑋 Nat 𝑌)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))⟩} ∈ 𝑈)
10017, 99eqeltrd 2828 . . 3 (𝜑𝑄𝑈)
1011, 12, 15fuccat 17935 . . 3 (𝜑𝑄 ∈ Cat)
102100, 101elind 4163 . 2 (𝜑𝑄 ∈ (𝑈 ∩ Cat))
103102, 10eleqtrrd 2831 1 (𝜑𝑄𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  [wsbc 3753  csb 3862  cin 3913  wss 3914  𝒫 cpw 4563  {ctp 4593  cop 4595   cuni 4871  cmpt 5188   × cxp 5636  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  ωcom 7842  1st c1st 7966  2nd c2nd 7967  m cmap 8799  pm cpm 8800  WUnicwun 10653  ndxcnx 17163  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625   Func cfunc 17816   Nat cnat 17906   FuncCat cfuc 17907  CatCatccatc 18060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-wun 10655  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-plpq 10861  df-mpq 10862  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-plq 10867  df-mq 10868  df-1nq 10869  df-rq 10870  df-ltnq 10871  df-np 10934  df-plp 10936  df-ltp 10938  df-enr 11008  df-nr 11009  df-c 11074  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-func 17820  df-nat 17908  df-fuc 17909  df-catc 18061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator