MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcfuccl Structured version   Visualization version   GIF version

Theorem catcfuccl 17815
Description: The category of categories for a weak universe is closed under the functor category operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.)
Hypotheses
Ref Expression
catcfuccl.c 𝐶 = (CatCat‘𝑈)
catcfuccl.b 𝐵 = (Base‘𝐶)
catcfuccl.o 𝑄 = (𝑋 FuncCat 𝑌)
catcfuccl.u (𝜑𝑈 ∈ WUni)
catcfuccl.1 (𝜑 → ω ∈ 𝑈)
catcfuccl.x (𝜑𝑋𝐵)
catcfuccl.y (𝜑𝑌𝐵)
Assertion
Ref Expression
catcfuccl (𝜑𝑄𝐵)

Proof of Theorem catcfuccl
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcfuccl.o . . . . 5 𝑄 = (𝑋 FuncCat 𝑌)
2 eqid 2739 . . . . 5 (𝑋 Func 𝑌) = (𝑋 Func 𝑌)
3 eqid 2739 . . . . 5 (𝑋 Nat 𝑌) = (𝑋 Nat 𝑌)
4 eqid 2739 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
5 eqid 2739 . . . . 5 (comp‘𝑌) = (comp‘𝑌)
6 catcfuccl.x . . . . . . 7 (𝜑𝑋𝐵)
7 catcfuccl.c . . . . . . . 8 𝐶 = (CatCat‘𝑈)
8 catcfuccl.b . . . . . . . 8 𝐵 = (Base‘𝐶)
9 catcfuccl.u . . . . . . . 8 (𝜑𝑈 ∈ WUni)
107, 8, 9catcbas 17797 . . . . . . 7 (𝜑𝐵 = (𝑈 ∩ Cat))
116, 10eleqtrd 2842 . . . . . 6 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
1211elin2d 4137 . . . . 5 (𝜑𝑋 ∈ Cat)
13 catcfuccl.y . . . . . . 7 (𝜑𝑌𝐵)
1413, 10eleqtrd 2842 . . . . . 6 (𝜑𝑌 ∈ (𝑈 ∩ Cat))
1514elin2d 4137 . . . . 5 (𝜑𝑌 ∈ Cat)
16 eqidd 2740 . . . . 5 (𝜑 → (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))))
171, 2, 3, 4, 5, 12, 15, 16fucval 17656 . . . 4 (𝜑𝑄 = {⟨(Base‘ndx), (𝑋 Func 𝑌)⟩, ⟨(Hom ‘ndx), (𝑋 Nat 𝑌)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))⟩})
18 baseid 16896 . . . . . . 7 Base = Slot (Base‘ndx)
19 catcfuccl.1 . . . . . . . 8 (𝜑 → ω ∈ 𝑈)
209, 19wunndx 16877 . . . . . . 7 (𝜑 → ndx ∈ 𝑈)
2118, 9, 20wunstr 16870 . . . . . 6 (𝜑 → (Base‘ndx) ∈ 𝑈)
227, 8, 9, 6catcbascl 17808 . . . . . . 7 (𝜑𝑋𝑈)
237, 8, 9, 13catcbascl 17808 . . . . . . 7 (𝜑𝑌𝑈)
249, 22, 23wunfunc 17595 . . . . . 6 (𝜑 → (𝑋 Func 𝑌) ∈ 𝑈)
259, 21, 24wunop 10462 . . . . 5 (𝜑 → ⟨(Base‘ndx), (𝑋 Func 𝑌)⟩ ∈ 𝑈)
26 homid 17103 . . . . . . 7 Hom = Slot (Hom ‘ndx)
2726, 9, 20wunstr 16870 . . . . . 6 (𝜑 → (Hom ‘ndx) ∈ 𝑈)
289, 22, 23wunnat 17653 . . . . . 6 (𝜑 → (𝑋 Nat 𝑌) ∈ 𝑈)
299, 27, 28wunop 10462 . . . . 5 (𝜑 → ⟨(Hom ‘ndx), (𝑋 Nat 𝑌)⟩ ∈ 𝑈)
30 ccoid 17105 . . . . . . 7 comp = Slot (comp‘ndx)
3130, 9, 20wunstr 16870 . . . . . 6 (𝜑 → (comp‘ndx) ∈ 𝑈)
329, 24, 24wunxp 10464 . . . . . . . 8 (𝜑 → ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) ∈ 𝑈)
339, 32, 24wunxp 10464 . . . . . . 7 (𝜑 → (((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌)) ∈ 𝑈)
347, 8, 9, 13catcccocl 17812 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑌) ∈ 𝑈)
359, 34wunrn 10469 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑌) ∈ 𝑈)
369, 35wununi 10446 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑌) ∈ 𝑈)
379, 36wunrn 10469 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑌) ∈ 𝑈)
389, 37wununi 10446 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑌) ∈ 𝑈)
399, 38wunpw 10447 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑌) ∈ 𝑈)
407, 8, 9, 6catcbaselcl 17810 . . . . . . . . 9 (𝜑 → (Base‘𝑋) ∈ 𝑈)
419, 39, 40wunmap 10466 . . . . . . . 8 (𝜑 → (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∈ 𝑈)
429, 28wunrn 10469 . . . . . . . . . 10 (𝜑 → ran (𝑋 Nat 𝑌) ∈ 𝑈)
439, 42wununi 10446 . . . . . . . . 9 (𝜑 ran (𝑋 Nat 𝑌) ∈ 𝑈)
449, 43, 43wunxp 10464 . . . . . . . 8 (𝜑 → ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)) ∈ 𝑈)
459, 41, 44wunpm 10465 . . . . . . 7 (𝜑 → ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ∈ 𝑈)
46 fvex 6781 . . . . . . . . . . 11 (1st𝑣) ∈ V
47 fvex 6781 . . . . . . . . . . . . . 14 (2nd𝑣) ∈ V
48 ovex 7301 . . . . . . . . . . . . . . . . 17 (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∈ V
49 ovex 7301 . . . . . . . . . . . . . . . . . . . 20 (𝑋 Nat 𝑌) ∈ V
5049rnex 7746 . . . . . . . . . . . . . . . . . . 19 ran (𝑋 Nat 𝑌) ∈ V
5150uniex 7585 . . . . . . . . . . . . . . . . . 18 ran (𝑋 Nat 𝑌) ∈ V
5251, 51xpex 7594 . . . . . . . . . . . . . . . . 17 ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)) ∈ V
53 eqid 2739 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) = (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))
54 ovssunirn 7304 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ⊆ ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))
55 ovssunirn 7304 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran (comp‘𝑌)
56 rnss 5845 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran (comp‘𝑌) → ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌))
57 uniss 4852 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌) → ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌))
5855, 56, 57mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . 24 ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌)
5954, 58sstri 3934 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ⊆ ran ran (comp‘𝑌)
60 ovex 7301 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ V
6160elpw 4542 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ 𝒫 ran ran (comp‘𝑌) ↔ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ⊆ ran ran (comp‘𝑌))
6259, 61mpbir 230 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ 𝒫 ran ran (comp‘𝑌)
6362a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (Base‘𝑋) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ 𝒫 ran ran (comp‘𝑌))
6453, 63fmpti 6980 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))):(Base‘𝑋)⟶𝒫 ran ran (comp‘𝑌)
65 fvex 6781 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (comp‘𝑌) ∈ V
6665rnex 7746 . . . . . . . . . . . . . . . . . . . . . . . . 25 ran (comp‘𝑌) ∈ V
6766uniex 7585 . . . . . . . . . . . . . . . . . . . . . . . 24 ran (comp‘𝑌) ∈ V
6867rnex 7746 . . . . . . . . . . . . . . . . . . . . . . 23 ran ran (comp‘𝑌) ∈ V
6968uniex 7585 . . . . . . . . . . . . . . . . . . . . . 22 ran ran (comp‘𝑌) ∈ V
7069pwex 5306 . . . . . . . . . . . . . . . . . . . . 21 𝒫 ran ran (comp‘𝑌) ∈ V
71 fvex 6781 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑋) ∈ V
7270, 71elmap 8633 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↔ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))):(Base‘𝑋)⟶𝒫 ran ran (comp‘𝑌))
7364, 72mpbir 230 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋))
7473rgen2w 3078 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ (𝑔(𝑋 Nat 𝑌))∀𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔)(𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋))
75 eqid 2739 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))
7675fmpo 7894 . . . . . . . . . . . . . . . . . 18 (∀𝑏 ∈ (𝑔(𝑋 Nat 𝑌))∀𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔)(𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↔ (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))):((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔))⟶(𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)))
7774, 76mpbi 229 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))):((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔))⟶(𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋))
78 ovssunirn 7304 . . . . . . . . . . . . . . . . . 18 (𝑔(𝑋 Nat 𝑌)) ⊆ ran (𝑋 Nat 𝑌)
79 ovssunirn 7304 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋 Nat 𝑌)𝑔) ⊆ ran (𝑋 Nat 𝑌)
80 xpss12 5603 . . . . . . . . . . . . . . . . . 18 (((𝑔(𝑋 Nat 𝑌)) ⊆ ran (𝑋 Nat 𝑌) ∧ (𝑓(𝑋 Nat 𝑌)𝑔) ⊆ ran (𝑋 Nat 𝑌)) → ((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔)) ⊆ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
8178, 79, 80mp2an 688 . . . . . . . . . . . . . . . . 17 ((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔)) ⊆ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))
82 elpm2r 8607 . . . . . . . . . . . . . . . . 17 ((((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∈ V ∧ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)) ∈ V) ∧ ((𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))):((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔))⟶(𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∧ ((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔)) ⊆ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))) → (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
8348, 52, 77, 81, 82mp4an 689 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
8483sbcth 3734 . . . . . . . . . . . . . . 15 ((2nd𝑣) ∈ V → [(2nd𝑣) / 𝑔](𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
85 sbcel1g 4352 . . . . . . . . . . . . . . 15 ((2nd𝑣) ∈ V → ([(2nd𝑣) / 𝑔](𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ↔ (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))))
8684, 85mpbid 231 . . . . . . . . . . . . . 14 ((2nd𝑣) ∈ V → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
8747, 86ax-mp 5 . . . . . . . . . . . . 13 (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
8887sbcth 3734 . . . . . . . . . . . 12 ((1st𝑣) ∈ V → [(1st𝑣) / 𝑓](2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
89 sbcel1g 4352 . . . . . . . . . . . 12 ((1st𝑣) ∈ V → ([(1st𝑣) / 𝑓](2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ↔ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))))
9088, 89mpbid 231 . . . . . . . . . . 11 ((1st𝑣) ∈ V → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
9146, 90ax-mp 5 . . . . . . . . . 10 (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
9291rgen2w 3078 . . . . . . . . 9 𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌))∀ ∈ (𝑋 Func 𝑌)(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
93 eqid 2739 . . . . . . . . . 10 (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))
9493fmpo 7894 . . . . . . . . 9 (∀𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌))∀ ∈ (𝑋 Func 𝑌)(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ↔ (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))):(((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌))⟶((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
9592, 94mpbi 229 . . . . . . . 8 (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))):(((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌))⟶((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
9695a1i 11 . . . . . . 7 (𝜑 → (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))):(((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌))⟶((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
979, 33, 45, 96wunf 10467 . . . . . 6 (𝜑 → (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))) ∈ 𝑈)
989, 31, 97wunop 10462 . . . . 5 (𝜑 → ⟨(comp‘ndx), (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))⟩ ∈ 𝑈)
999, 25, 29, 98wuntp 10451 . . . 4 (𝜑 → {⟨(Base‘ndx), (𝑋 Func 𝑌)⟩, ⟨(Hom ‘ndx), (𝑋 Nat 𝑌)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))⟩} ∈ 𝑈)
10017, 99eqeltrd 2840 . . 3 (𝜑𝑄𝑈)
1011, 12, 15fuccat 17669 . . 3 (𝜑𝑄 ∈ Cat)
102100, 101elind 4132 . 2 (𝜑𝑄 ∈ (𝑈 ∩ Cat))
103102, 10eleqtrrd 2843 1 (𝜑𝑄𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  wral 3065  Vcvv 3430  [wsbc 3719  csb 3836  cin 3890  wss 3891  𝒫 cpw 4538  {ctp 4570  cop 4572   cuni 4844  cmpt 5161   × cxp 5586  ran crn 5589  wf 6426  cfv 6430  (class class class)co 7268  cmpo 7270  ωcom 7700  1st c1st 7815  2nd c2nd 7816  m cmap 8589  pm cpm 8590  WUnicwun 10440  ndxcnx 16875  Basecbs 16893  Hom chom 16954  compcco 16955  Catccat 17354   Func cfunc 17550   Nat cnat 17638   FuncCat cfuc 17639  CatCatccatc 17794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-omul 8286  df-er 8472  df-ec 8474  df-qs 8478  df-map 8591  df-pm 8592  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-wun 10442  df-ni 10612  df-pli 10613  df-mi 10614  df-lti 10615  df-plpq 10648  df-mpq 10649  df-ltpq 10650  df-enq 10651  df-nq 10652  df-erq 10653  df-plq 10654  df-mq 10655  df-1nq 10656  df-rq 10657  df-ltnq 10658  df-np 10721  df-plp 10723  df-ltp 10725  df-enr 10795  df-nr 10796  df-c 10861  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-struct 16829  df-slot 16864  df-ndx 16876  df-base 16894  df-hom 16967  df-cco 16968  df-cat 17358  df-cid 17359  df-func 17554  df-nat 17640  df-fuc 17641  df-catc 17795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator