MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcfuccl Structured version   Visualization version   GIF version

Theorem catcfuccl 17435
Description: The category of categories for a weak universe is closed under the functor category operation. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
catcfuccl.c 𝐶 = (CatCat‘𝑈)
catcfuccl.b 𝐵 = (Base‘𝐶)
catcfuccl.o 𝑄 = (𝑋 FuncCat 𝑌)
catcfuccl.u (𝜑𝑈 ∈ WUni)
catcfuccl.1 (𝜑 → ω ∈ 𝑈)
catcfuccl.x (𝜑𝑋𝐵)
catcfuccl.y (𝜑𝑌𝐵)
Assertion
Ref Expression
catcfuccl (𝜑𝑄𝐵)

Proof of Theorem catcfuccl
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcfuccl.o . . . . 5 𝑄 = (𝑋 FuncCat 𝑌)
2 eqid 2758 . . . . 5 (𝑋 Func 𝑌) = (𝑋 Func 𝑌)
3 eqid 2758 . . . . 5 (𝑋 Nat 𝑌) = (𝑋 Nat 𝑌)
4 eqid 2758 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
5 eqid 2758 . . . . 5 (comp‘𝑌) = (comp‘𝑌)
6 catcfuccl.x . . . . . . 7 (𝜑𝑋𝐵)
7 catcfuccl.c . . . . . . . 8 𝐶 = (CatCat‘𝑈)
8 catcfuccl.b . . . . . . . 8 𝐵 = (Base‘𝐶)
9 catcfuccl.u . . . . . . . 8 (𝜑𝑈 ∈ WUni)
107, 8, 9catcbas 17423 . . . . . . 7 (𝜑𝐵 = (𝑈 ∩ Cat))
116, 10eleqtrd 2854 . . . . . 6 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
1211elin2d 4104 . . . . 5 (𝜑𝑋 ∈ Cat)
13 catcfuccl.y . . . . . . 7 (𝜑𝑌𝐵)
1413, 10eleqtrd 2854 . . . . . 6 (𝜑𝑌 ∈ (𝑈 ∩ Cat))
1514elin2d 4104 . . . . 5 (𝜑𝑌 ∈ Cat)
16 eqidd 2759 . . . . 5 (𝜑 → (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))))
171, 2, 3, 4, 5, 12, 15, 16fucval 17287 . . . 4 (𝜑𝑄 = {⟨(Base‘ndx), (𝑋 Func 𝑌)⟩, ⟨(Hom ‘ndx), (𝑋 Nat 𝑌)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))⟩})
18 df-base 16547 . . . . . . 7 Base = Slot 1
19 catcfuccl.1 . . . . . . . 8 (𝜑 → ω ∈ 𝑈)
209, 19wunndx 16562 . . . . . . 7 (𝜑 → ndx ∈ 𝑈)
2118, 9, 20wunstr 16565 . . . . . 6 (𝜑 → (Base‘ndx) ∈ 𝑈)
2211elin1d 4103 . . . . . . 7 (𝜑𝑋𝑈)
2314elin1d 4103 . . . . . . 7 (𝜑𝑌𝑈)
249, 22, 23wunfunc 17228 . . . . . 6 (𝜑 → (𝑋 Func 𝑌) ∈ 𝑈)
259, 21, 24wunop 10182 . . . . 5 (𝜑 → ⟨(Base‘ndx), (𝑋 Func 𝑌)⟩ ∈ 𝑈)
26 df-hom 16647 . . . . . . 7 Hom = Slot 14
2726, 9, 20wunstr 16565 . . . . . 6 (𝜑 → (Hom ‘ndx) ∈ 𝑈)
289, 22, 23wunnat 17285 . . . . . 6 (𝜑 → (𝑋 Nat 𝑌) ∈ 𝑈)
299, 27, 28wunop 10182 . . . . 5 (𝜑 → ⟨(Hom ‘ndx), (𝑋 Nat 𝑌)⟩ ∈ 𝑈)
30 df-cco 16648 . . . . . . 7 comp = Slot 15
3130, 9, 20wunstr 16565 . . . . . 6 (𝜑 → (comp‘ndx) ∈ 𝑈)
329, 24, 24wunxp 10184 . . . . . . . 8 (𝜑 → ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) ∈ 𝑈)
339, 32, 24wunxp 10184 . . . . . . 7 (𝜑 → (((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌)) ∈ 𝑈)
3430, 9, 23wunstr 16565 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑌) ∈ 𝑈)
359, 34wunrn 10189 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑌) ∈ 𝑈)
369, 35wununi 10166 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑌) ∈ 𝑈)
379, 36wunrn 10189 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑌) ∈ 𝑈)
389, 37wununi 10166 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑌) ∈ 𝑈)
399, 38wunpw 10167 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑌) ∈ 𝑈)
4018, 9, 22wunstr 16565 . . . . . . . . 9 (𝜑 → (Base‘𝑋) ∈ 𝑈)
419, 39, 40wunmap 10186 . . . . . . . 8 (𝜑 → (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∈ 𝑈)
429, 28wunrn 10189 . . . . . . . . . 10 (𝜑 → ran (𝑋 Nat 𝑌) ∈ 𝑈)
439, 42wununi 10166 . . . . . . . . 9 (𝜑 ran (𝑋 Nat 𝑌) ∈ 𝑈)
449, 43, 43wunxp 10184 . . . . . . . 8 (𝜑 → ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)) ∈ 𝑈)
459, 41, 44wunpm 10185 . . . . . . 7 (𝜑 → ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ∈ 𝑈)
46 fvex 6671 . . . . . . . . . . 11 (1st𝑣) ∈ V
47 fvex 6671 . . . . . . . . . . . . . 14 (2nd𝑣) ∈ V
48 ovex 7183 . . . . . . . . . . . . . . . . 17 (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∈ V
49 ovex 7183 . . . . . . . . . . . . . . . . . . . 20 (𝑋 Nat 𝑌) ∈ V
5049rnex 7622 . . . . . . . . . . . . . . . . . . 19 ran (𝑋 Nat 𝑌) ∈ V
5150uniex 7465 . . . . . . . . . . . . . . . . . 18 ran (𝑋 Nat 𝑌) ∈ V
5251, 51xpex 7474 . . . . . . . . . . . . . . . . 17 ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)) ∈ V
53 eqid 2758 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) = (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))
54 ovssunirn 7186 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ⊆ ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))
55 ovssunirn 7186 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran (comp‘𝑌)
56 rnss 5780 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran (comp‘𝑌) → ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌))
57 uniss 4806 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌) → ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌))
5855, 56, 57mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . 24 ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌)
5954, 58sstri 3901 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ⊆ ran ran (comp‘𝑌)
60 ovex 7183 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ V
6160elpw 4498 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ 𝒫 ran ran (comp‘𝑌) ↔ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ⊆ ran ran (comp‘𝑌))
6259, 61mpbir 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ 𝒫 ran ran (comp‘𝑌)
6362a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (Base‘𝑋) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ 𝒫 ran ran (comp‘𝑌))
6453, 63fmpti 6867 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))):(Base‘𝑋)⟶𝒫 ran ran (comp‘𝑌)
65 fvex 6671 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (comp‘𝑌) ∈ V
6665rnex 7622 . . . . . . . . . . . . . . . . . . . . . . . . 25 ran (comp‘𝑌) ∈ V
6766uniex 7465 . . . . . . . . . . . . . . . . . . . . . . . 24 ran (comp‘𝑌) ∈ V
6867rnex 7622 . . . . . . . . . . . . . . . . . . . . . . 23 ran ran (comp‘𝑌) ∈ V
6968uniex 7465 . . . . . . . . . . . . . . . . . . . . . 22 ran ran (comp‘𝑌) ∈ V
7069pwex 5249 . . . . . . . . . . . . . . . . . . . . 21 𝒫 ran ran (comp‘𝑌) ∈ V
71 fvex 6671 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑋) ∈ V
7270, 71elmap 8453 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↔ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))):(Base‘𝑋)⟶𝒫 ran ran (comp‘𝑌))
7364, 72mpbir 234 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋))
7473rgen2w 3083 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ (𝑔(𝑋 Nat 𝑌))∀𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔)(𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋))
75 eqid 2758 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))
7675fmpo 7770 . . . . . . . . . . . . . . . . . 18 (∀𝑏 ∈ (𝑔(𝑋 Nat 𝑌))∀𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔)(𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↔ (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))):((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔))⟶(𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)))
7774, 76mpbi 233 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))):((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔))⟶(𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋))
78 ovssunirn 7186 . . . . . . . . . . . . . . . . . 18 (𝑔(𝑋 Nat 𝑌)) ⊆ ran (𝑋 Nat 𝑌)
79 ovssunirn 7186 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋 Nat 𝑌)𝑔) ⊆ ran (𝑋 Nat 𝑌)
80 xpss12 5539 . . . . . . . . . . . . . . . . . 18 (((𝑔(𝑋 Nat 𝑌)) ⊆ ran (𝑋 Nat 𝑌) ∧ (𝑓(𝑋 Nat 𝑌)𝑔) ⊆ ran (𝑋 Nat 𝑌)) → ((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔)) ⊆ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
8178, 79, 80mp2an 691 . . . . . . . . . . . . . . . . 17 ((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔)) ⊆ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))
82 elpm2r 8434 . . . . . . . . . . . . . . . . 17 ((((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∈ V ∧ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)) ∈ V) ∧ ((𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))):((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔))⟶(𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∧ ((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔)) ⊆ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))) → (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
8348, 52, 77, 81, 82mp4an 692 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
8483sbcth 3711 . . . . . . . . . . . . . . 15 ((2nd𝑣) ∈ V → [(2nd𝑣) / 𝑔](𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
85 sbcel1g 4310 . . . . . . . . . . . . . . 15 ((2nd𝑣) ∈ V → ([(2nd𝑣) / 𝑔](𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ↔ (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))))
8684, 85mpbid 235 . . . . . . . . . . . . . 14 ((2nd𝑣) ∈ V → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
8747, 86ax-mp 5 . . . . . . . . . . . . 13 (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
8887sbcth 3711 . . . . . . . . . . . 12 ((1st𝑣) ∈ V → [(1st𝑣) / 𝑓](2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
89 sbcel1g 4310 . . . . . . . . . . . 12 ((1st𝑣) ∈ V → ([(1st𝑣) / 𝑓](2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ↔ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))))
9088, 89mpbid 235 . . . . . . . . . . 11 ((1st𝑣) ∈ V → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
9146, 90ax-mp 5 . . . . . . . . . 10 (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
9291rgen2w 3083 . . . . . . . . 9 𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌))∀ ∈ (𝑋 Func 𝑌)(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
93 eqid 2758 . . . . . . . . . 10 (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))
9493fmpo 7770 . . . . . . . . 9 (∀𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌))∀ ∈ (𝑋 Func 𝑌)(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ↔ (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))):(((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌))⟶((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
9592, 94mpbi 233 . . . . . . . 8 (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))):(((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌))⟶((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
9695a1i 11 . . . . . . 7 (𝜑 → (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))):(((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌))⟶((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
979, 33, 45, 96wunf 10187 . . . . . 6 (𝜑 → (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))) ∈ 𝑈)
989, 31, 97wunop 10182 . . . . 5 (𝜑 → ⟨(comp‘ndx), (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))⟩ ∈ 𝑈)
999, 25, 29, 98wuntp 10171 . . . 4 (𝜑 → {⟨(Base‘ndx), (𝑋 Func 𝑌)⟩, ⟨(Hom ‘ndx), (𝑋 Nat 𝑌)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))⟩} ∈ 𝑈)
10017, 99eqeltrd 2852 . . 3 (𝜑𝑄𝑈)
1011, 12, 15fuccat 17299 . . 3 (𝜑𝑄 ∈ Cat)
102100, 101elind 4099 . 2 (𝜑𝑄 ∈ (𝑈 ∩ Cat))
103102, 10eleqtrrd 2855 1 (𝜑𝑄𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wral 3070  Vcvv 3409  [wsbc 3696  csb 3805  cin 3857  wss 3858  𝒫 cpw 4494  {ctp 4526  cop 4528   cuni 4798  cmpt 5112   × cxp 5522  ran crn 5525  wf 6331  cfv 6335  (class class class)co 7150  cmpo 7152  ωcom 7579  1st c1st 7691  2nd c2nd 7692  m cmap 8416  pm cpm 8417  WUnicwun 10160  1c1 10576  4c4 11731  5c5 11732  cdc 12137  ndxcnx 16538  Basecbs 16541  Hom chom 16634  compcco 16635  Catccat 16993   Func cfunc 17183   Nat cnat 17270   FuncCat cfuc 17271  CatCatccatc 17420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-oadd 8116  df-omul 8117  df-er 8299  df-ec 8301  df-qs 8305  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-wun 10162  df-ni 10332  df-pli 10333  df-mi 10334  df-lti 10335  df-plpq 10368  df-mpq 10369  df-ltpq 10370  df-enq 10371  df-nq 10372  df-erq 10373  df-plq 10374  df-mq 10375  df-1nq 10376  df-rq 10377  df-ltnq 10378  df-np 10441  df-plp 10443  df-ltp 10445  df-enr 10515  df-nr 10516  df-c 10581  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-hom 16647  df-cco 16648  df-cat 16997  df-cid 16998  df-func 17187  df-nat 17272  df-fuc 17273  df-catc 17421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator