Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk35s Structured version   Visualization version   GIF version

Theorem cdlemk35s 39156
Description: Substitution version of cdlemk35 39131. (Contributed by NM, 22-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk35s (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 / 𝑔𝑋𝑇)
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk35s
StepHypRef Expression
1 simp22l 1291 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺𝑇)
2 cdlemk5.b . . . . . 6 𝐵 = (Base‘𝐾)
3 cdlemk5.l . . . . . 6 = (le‘𝐾)
4 cdlemk5.j . . . . . 6 = (join‘𝐾)
5 cdlemk5.m . . . . . 6 = (meet‘𝐾)
6 cdlemk5.a . . . . . 6 𝐴 = (Atoms‘𝐾)
7 cdlemk5.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 cdlemk5.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemk5.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
10 cdlemk5.z . . . . . 6 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
11 cdlemk5.y . . . . . 6 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
12 cdlemk5.x . . . . . 6 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
132, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemk35 39131 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋𝑇)
1413sbcth 3741 . . . 4 (𝐺𝑇[𝐺 / 𝑔](((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋𝑇))
15 sbcimg 3777 . . . 4 (𝐺𝑇 → ([𝐺 / 𝑔](((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋𝑇) ↔ ([𝐺 / 𝑔]((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → [𝐺 / 𝑔]𝑋𝑇)))
1614, 15mpbid 231 . . 3 (𝐺𝑇 → ([𝐺 / 𝑔]((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → [𝐺 / 𝑔]𝑋𝑇))
17 eleq1 2825 . . . . . . 7 (𝑔 = 𝐺 → (𝑔𝑇𝐺𝑇))
18 neeq1 3004 . . . . . . 7 (𝑔 = 𝐺 → (𝑔 ≠ ( I ↾ 𝐵) ↔ 𝐺 ≠ ( I ↾ 𝐵)))
1917, 18anbi12d 631 . . . . . 6 (𝑔 = 𝐺 → ((𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ↔ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))))
20193anbi2d 1440 . . . . 5 (𝑔 = 𝐺 → (((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ↔ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇)))
21203anbi2d 1440 . . . 4 (𝑔 = 𝐺 → (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ↔ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))))
2221sbcieg 3766 . . 3 (𝐺𝑇 → ([𝐺 / 𝑔]((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ↔ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))))
23 sbcel1g 4358 . . 3 (𝐺𝑇 → ([𝐺 / 𝑔]𝑋𝑇𝐺 / 𝑔𝑋𝑇))
2416, 22, 233imtr3d 292 . 2 (𝐺𝑇 → (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 / 𝑔𝑋𝑇))
251, 24mpcom 38 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 / 𝑔𝑋𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2941  wral 3062  [wsbc 3726  csb 3842   class class class wbr 5087   I cid 5506  ccnv 5606  cres 5609  ccom 5611  cfv 6465  crio 7271  (class class class)co 7315  Basecbs 16982  lecple 17039  joincjn 18099  meetcmee 18100  Atomscatm 37481  HLchlt 37568  LHypclh 38203  LTrncltrn 38320  trLctrl 38377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-riotaBAD 37171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-1st 7876  df-2nd 7877  df-undef 8136  df-map 8665  df-proset 18083  df-poset 18101  df-plt 18118  df-lub 18134  df-glb 18135  df-join 18136  df-meet 18137  df-p0 18213  df-p1 18214  df-lat 18220  df-clat 18287  df-oposet 37394  df-ol 37396  df-oml 37397  df-covers 37484  df-ats 37485  df-atl 37516  df-cvlat 37540  df-hlat 37569  df-llines 37717  df-lplanes 37718  df-lvols 37719  df-lines 37720  df-psubsp 37722  df-pmap 37723  df-padd 38015  df-lhyp 38207  df-laut 38208  df-ldil 38323  df-ltrn 38324  df-trl 38378
This theorem is referenced by:  cdlemk35s-id  39157  cdlemk47  39168  cdlemk48  39169  cdlemk49  39170  cdlemk50  39171  cdlemk51  39172  cdlemk52  39173  cdlemk53a  39174
  Copyright terms: Public domain W3C validator