| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk35s | Structured version Visualization version GIF version | ||
| Description: Substitution version of cdlemk35 40906. (Contributed by NM, 22-Jul-2013.) |
| Ref | Expression |
|---|---|
| cdlemk5.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemk5.l | ⊢ ≤ = (le‘𝐾) |
| cdlemk5.j | ⊢ ∨ = (join‘𝐾) |
| cdlemk5.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemk5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemk5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemk5.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemk5.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemk5.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
| cdlemk5.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
| cdlemk5.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
| Ref | Expression |
|---|---|
| cdlemk35s | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp22l 1293 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → 𝐺 ∈ 𝑇) | |
| 2 | cdlemk5.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | cdlemk5.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 4 | cdlemk5.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 5 | cdlemk5.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 6 | cdlemk5.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | cdlemk5.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | cdlemk5.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 9 | cdlemk5.r | . . . . . 6 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 10 | cdlemk5.z | . . . . . 6 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
| 11 | cdlemk5.y | . . . . . 6 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
| 12 | cdlemk5.x | . . . . . 6 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | |
| 13 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemk35 40906 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → 𝑋 ∈ 𝑇) |
| 14 | 13 | sbcth 3768 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → [𝐺 / 𝑔](((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → 𝑋 ∈ 𝑇)) |
| 15 | sbcimg 3802 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔](((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → 𝑋 ∈ 𝑇) ↔ ([𝐺 / 𝑔]((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → [𝐺 / 𝑔]𝑋 ∈ 𝑇))) | |
| 16 | 14, 15 | mpbid 232 | . . 3 ⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → [𝐺 / 𝑔]𝑋 ∈ 𝑇)) |
| 17 | eleq1 2816 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ 𝑇 ↔ 𝐺 ∈ 𝑇)) | |
| 18 | neeq1 2987 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑔 ≠ ( I ↾ 𝐵) ↔ 𝐺 ≠ ( I ↾ 𝐵))) | |
| 19 | 17, 18 | anbi12d 632 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ↔ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)))) |
| 20 | 19 | 3anbi2d 1443 | . . . . 5 ⊢ (𝑔 = 𝐺 → (((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ↔ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇))) |
| 21 | 20 | 3anbi2d 1443 | . . . 4 ⊢ (𝑔 = 𝐺 → (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ↔ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))))) |
| 22 | 21 | sbcieg 3793 | . . 3 ⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ↔ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))))) |
| 23 | sbcel1g 4379 | . . 3 ⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]𝑋 ∈ 𝑇 ↔ ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇)) | |
| 24 | 16, 22, 23 | 3imtr3d 293 | . 2 ⊢ (𝐺 ∈ 𝑇 → (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇)) |
| 25 | 1, 24 | mpcom 38 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 [wsbc 3753 ⦋csb 3862 class class class wbr 5107 I cid 5532 ◡ccnv 5637 ↾ cres 5640 ∘ ccom 5642 ‘cfv 6511 ℩crio 7343 (class class class)co 7387 Basecbs 17179 lecple 17227 joincjn 18272 meetcmee 18273 Atomscatm 39256 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 trLctrl 40152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-undef 8252 df-map 8801 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 |
| This theorem is referenced by: cdlemk35s-id 40932 cdlemk47 40943 cdlemk48 40944 cdlemk49 40945 cdlemk50 40946 cdlemk51 40947 cdlemk52 40948 cdlemk53a 40949 |
| Copyright terms: Public domain | W3C validator |