Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk35s | Structured version Visualization version GIF version |
Description: Substitution version of cdlemk35 39131. (Contributed by NM, 22-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk5.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk5.l | ⊢ ≤ = (le‘𝐾) |
cdlemk5.j | ⊢ ∨ = (join‘𝐾) |
cdlemk5.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk5.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk5.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk5.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
cdlemk5.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
cdlemk5.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
Ref | Expression |
---|---|
cdlemk35s | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp22l 1291 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → 𝐺 ∈ 𝑇) | |
2 | cdlemk5.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
3 | cdlemk5.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
4 | cdlemk5.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
5 | cdlemk5.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
6 | cdlemk5.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | cdlemk5.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | cdlemk5.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | cdlemk5.r | . . . . . 6 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
10 | cdlemk5.z | . . . . . 6 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
11 | cdlemk5.y | . . . . . 6 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
12 | cdlemk5.x | . . . . . 6 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | |
13 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemk35 39131 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → 𝑋 ∈ 𝑇) |
14 | 13 | sbcth 3741 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → [𝐺 / 𝑔](((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → 𝑋 ∈ 𝑇)) |
15 | sbcimg 3777 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔](((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → 𝑋 ∈ 𝑇) ↔ ([𝐺 / 𝑔]((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → [𝐺 / 𝑔]𝑋 ∈ 𝑇))) | |
16 | 14, 15 | mpbid 231 | . . 3 ⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → [𝐺 / 𝑔]𝑋 ∈ 𝑇)) |
17 | eleq1 2825 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ 𝑇 ↔ 𝐺 ∈ 𝑇)) | |
18 | neeq1 3004 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑔 ≠ ( I ↾ 𝐵) ↔ 𝐺 ≠ ( I ↾ 𝐵))) | |
19 | 17, 18 | anbi12d 631 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ↔ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)))) |
20 | 19 | 3anbi2d 1440 | . . . . 5 ⊢ (𝑔 = 𝐺 → (((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ↔ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇))) |
21 | 20 | 3anbi2d 1440 | . . . 4 ⊢ (𝑔 = 𝐺 → (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ↔ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))))) |
22 | 21 | sbcieg 3766 | . . 3 ⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ↔ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))))) |
23 | sbcel1g 4358 | . . 3 ⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]𝑋 ∈ 𝑇 ↔ ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇)) | |
24 | 16, 22, 23 | 3imtr3d 292 | . 2 ⊢ (𝐺 ∈ 𝑇 → (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇)) |
25 | 1, 24 | mpcom 38 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∀wral 3062 [wsbc 3726 ⦋csb 3842 class class class wbr 5087 I cid 5506 ◡ccnv 5606 ↾ cres 5609 ∘ ccom 5611 ‘cfv 6465 ℩crio 7271 (class class class)co 7315 Basecbs 16982 lecple 17039 joincjn 18099 meetcmee 18100 Atomscatm 37481 HLchlt 37568 LHypclh 38203 LTrncltrn 38320 trLctrl 38377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-riotaBAD 37171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-1st 7876 df-2nd 7877 df-undef 8136 df-map 8665 df-proset 18083 df-poset 18101 df-plt 18118 df-lub 18134 df-glb 18135 df-join 18136 df-meet 18137 df-p0 18213 df-p1 18214 df-lat 18220 df-clat 18287 df-oposet 37394 df-ol 37396 df-oml 37397 df-covers 37484 df-ats 37485 df-atl 37516 df-cvlat 37540 df-hlat 37569 df-llines 37717 df-lplanes 37718 df-lvols 37719 df-lines 37720 df-psubsp 37722 df-pmap 37723 df-padd 38015 df-lhyp 38207 df-laut 38208 df-ldil 38323 df-ltrn 38324 df-trl 38378 |
This theorem is referenced by: cdlemk35s-id 39157 cdlemk47 39168 cdlemk48 39169 cdlemk49 39170 cdlemk50 39171 cdlemk51 39172 cdlemk52 39173 cdlemk53a 39174 |
Copyright terms: Public domain | W3C validator |