Step | Hyp | Ref
| Expression |
1 | | wunnat.1 |
. 2
⊢ (𝜑 → 𝑈 ∈ WUni) |
2 | | wunnat.2 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
3 | | wunnat.3 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑈) |
4 | 1, 2, 3 | wunfunc 16918 |
. . 3
⊢ (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈) |
5 | 1, 4, 4 | wunxp 9868 |
. 2
⊢ (𝜑 → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ∈ 𝑈) |
6 | | df-hom 16336 |
. . . . . . 7
⊢ Hom =
Slot ;14 |
7 | 6, 1, 3 | wunstr 16253 |
. . . . . 6
⊢ (𝜑 → (Hom ‘𝐷) ∈ 𝑈) |
8 | 1, 7 | wunrn 9873 |
. . . . 5
⊢ (𝜑 → ran (Hom ‘𝐷) ∈ 𝑈) |
9 | 1, 8 | wununi 9850 |
. . . 4
⊢ (𝜑 → ∪ ran (Hom ‘𝐷) ∈ 𝑈) |
10 | | df-base 16235 |
. . . . 5
⊢ Base =
Slot 1 |
11 | 10, 1, 2 | wunstr 16253 |
. . . 4
⊢ (𝜑 → (Base‘𝐶) ∈ 𝑈) |
12 | 1, 9, 11 | wunmap 9870 |
. . 3
⊢ (𝜑 → (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)) ∈
𝑈) |
13 | 1, 12 | wunpw 9851 |
. 2
⊢ (𝜑 → 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)) ∈
𝑈) |
14 | | fvex 6450 |
. . . . . 6
⊢
(1st ‘𝑓) ∈ V |
15 | | fvex 6450 |
. . . . . . . . 9
⊢
(1st ‘𝑔) ∈ V |
16 | | ssrab2 3914 |
. . . . . . . . . . . . 13
⊢ {𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ⊆ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) |
17 | | ovssunirn 6945 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ⊆ ∪ ran
(Hom ‘𝐷) |
18 | 17 | rgenw 3133 |
. . . . . . . . . . . . . . 15
⊢
∀𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ⊆ ∪ ran
(Hom ‘𝐷) |
19 | | ss2ixp 8194 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ⊆ ∪ ran
(Hom ‘𝐷) → X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ⊆ X𝑥 ∈ (Base‘𝐶)∪
ran (Hom ‘𝐷)) |
20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ⊆ X𝑥 ∈ (Base‘𝐶)∪
ran (Hom ‘𝐷) |
21 | | fvex 6450 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐶)
∈ V |
22 | | fvex 6450 |
. . . . . . . . . . . . . . . . 17
⊢ (Hom
‘𝐷) ∈
V |
23 | 22 | rnex 7367 |
. . . . . . . . . . . . . . . 16
⊢ ran (Hom
‘𝐷) ∈
V |
24 | 23 | uniex 7218 |
. . . . . . . . . . . . . . 15
⊢ ∪ ran (Hom ‘𝐷) ∈ V |
25 | 21, 24 | ixpconst 8191 |
. . . . . . . . . . . . . 14
⊢ X𝑥 ∈
(Base‘𝐶)∪ ran (Hom ‘𝐷) = (∪ ran (Hom
‘𝐷)
↑𝑚 (Base‘𝐶)) |
26 | 20, 25 | sseqtri 3862 |
. . . . . . . . . . . . 13
⊢ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ⊆ (∪ ran
(Hom ‘𝐷)
↑𝑚 (Base‘𝐶)) |
27 | 16, 26 | sstri 3836 |
. . . . . . . . . . . 12
⊢ {𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ⊆ (∪ ran
(Hom ‘𝐷)
↑𝑚 (Base‘𝐶)) |
28 | | ovex 6942 |
. . . . . . . . . . . . 13
⊢ (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)) ∈
V |
29 | 28 | elpw2 5052 |
. . . . . . . . . . . 12
⊢ ({𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)) ↔
{𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ⊆ (∪ ran
(Hom ‘𝐷)
↑𝑚 (Base‘𝐶))) |
30 | 27, 29 | mpbir 223 |
. . . . . . . . . . 11
⊢ {𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)) |
31 | 30 | sbcth 3677 |
. . . . . . . . . 10
⊢
((1st ‘𝑔) ∈ V → [(1st
‘𝑔) / 𝑠]{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶))) |
32 | | sbcel1g 4213 |
. . . . . . . . . 10
⊢
((1st ‘𝑔) ∈ V → ([(1st
‘𝑔) / 𝑠]{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)) ↔
⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)))) |
33 | 31, 32 | mpbid 224 |
. . . . . . . . 9
⊢
((1st ‘𝑔) ∈ V →
⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶))) |
34 | 15, 33 | ax-mp 5 |
. . . . . . . 8
⊢
⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)) |
35 | 34 | sbcth 3677 |
. . . . . . 7
⊢
((1st ‘𝑓) ∈ V → [(1st
‘𝑓) / 𝑟]⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶))) |
36 | | sbcel1g 4213 |
. . . . . . 7
⊢
((1st ‘𝑓) ∈ V → ([(1st
‘𝑓) / 𝑟]⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)) ↔
⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)))) |
37 | 35, 36 | mpbid 224 |
. . . . . 6
⊢
((1st ‘𝑓) ∈ V →
⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶))) |
38 | 14, 37 | ax-mp 5 |
. . . . 5
⊢
⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)) |
39 | 38 | rgen2w 3134 |
. . . 4
⊢
∀𝑓 ∈
(𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)) |
40 | | eqid 2825 |
. . . . . 6
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) |
41 | | eqid 2825 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
42 | | eqid 2825 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
43 | | eqid 2825 |
. . . . . 6
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
44 | | eqid 2825 |
. . . . . 6
⊢
(comp‘𝐷) =
(comp‘𝐷) |
45 | 40, 41, 42, 43, 44 | natfval 16965 |
. . . . 5
⊢ (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
46 | 45 | fmpt2 7505 |
. . . 4
⊢
(∀𝑓 ∈
(𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘𝑧)) = (((𝑥(2nd ‘𝑔)𝑦)‘𝑧)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} ∈ 𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)) ↔
(𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶))) |
47 | 39, 46 | mpbi 222 |
. . 3
⊢ (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶)) |
48 | 47 | a1i 11 |
. 2
⊢ (𝜑 → (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 (∪ ran (Hom ‘𝐷) ↑𝑚
(Base‘𝐶))) |
49 | 1, 5, 13, 48 | wunf 9871 |
1
⊢ (𝜑 → (𝐶 Nat 𝐷) ∈ 𝑈) |