MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunnat Structured version   Visualization version   GIF version

Theorem wunnat 17218
Description: A weak universe is closed under the natural transformation operation. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wunnat.1 (𝜑𝑈 ∈ WUni)
wunnat.2 (𝜑𝐶𝑈)
wunnat.3 (𝜑𝐷𝑈)
Assertion
Ref Expression
wunnat (𝜑 → (𝐶 Nat 𝐷) ∈ 𝑈)

Proof of Theorem wunnat
Dummy variables 𝑓 𝑎 𝑔 𝑟 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunnat.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunnat.2 . . . 4 (𝜑𝐶𝑈)
3 wunnat.3 . . . 4 (𝜑𝐷𝑈)
41, 2, 3wunfunc 17161 . . 3 (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)
51, 4, 4wunxp 10135 . 2 (𝜑 → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ∈ 𝑈)
6 df-hom 16581 . . . . . . 7 Hom = Slot 14
76, 1, 3wunstr 16499 . . . . . 6 (𝜑 → (Hom ‘𝐷) ∈ 𝑈)
81, 7wunrn 10140 . . . . 5 (𝜑 → ran (Hom ‘𝐷) ∈ 𝑈)
91, 8wununi 10117 . . . 4 (𝜑 ran (Hom ‘𝐷) ∈ 𝑈)
10 df-base 16481 . . . . 5 Base = Slot 1
1110, 1, 2wunstr 16499 . . . 4 (𝜑 → (Base‘𝐶) ∈ 𝑈)
121, 9, 11wunmap 10137 . . 3 (𝜑 → ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ∈ 𝑈)
131, 12wunpw 10118 . 2 (𝜑 → 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ∈ 𝑈)
14 fvex 6658 . . . . . 6 (1st𝑓) ∈ V
15 fvex 6658 . . . . . . . . 9 (1st𝑔) ∈ V
16 ovex 7168 . . . . . . . . . . . 12 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ∈ V
17 ssrab2 4007 . . . . . . . . . . . . 13 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ⊆ X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥))
18 ovssunirn 7171 . . . . . . . . . . . . . . . 16 ((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ran (Hom ‘𝐷)
1918rgenw 3118 . . . . . . . . . . . . . . 15 𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ran (Hom ‘𝐷)
20 ss2ixp 8457 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ran (Hom ‘𝐷) → X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ X𝑥 ∈ (Base‘𝐶) ran (Hom ‘𝐷))
2119, 20ax-mp 5 . . . . . . . . . . . . . 14 X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ X𝑥 ∈ (Base‘𝐶) ran (Hom ‘𝐷)
22 fvex 6658 . . . . . . . . . . . . . . 15 (Base‘𝐶) ∈ V
23 fvex 6658 . . . . . . . . . . . . . . . . 17 (Hom ‘𝐷) ∈ V
2423rnex 7599 . . . . . . . . . . . . . . . 16 ran (Hom ‘𝐷) ∈ V
2524uniex 7447 . . . . . . . . . . . . . . 15 ran (Hom ‘𝐷) ∈ V
2622, 25ixpconst 8454 . . . . . . . . . . . . . 14 X𝑥 ∈ (Base‘𝐶) ran (Hom ‘𝐷) = ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
2721, 26sseqtri 3951 . . . . . . . . . . . . 13 X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
2817, 27sstri 3924 . . . . . . . . . . . 12 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ⊆ ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
2916, 28elpwi2 5213 . . . . . . . . . . 11 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
3029sbcth 3735 . . . . . . . . . 10 ((1st𝑔) ∈ V → [(1st𝑔) / 𝑠]{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
31 sbcel1g 4321 . . . . . . . . . 10 ((1st𝑔) ∈ V → ([(1st𝑔) / 𝑠]{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ↔ (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))))
3230, 31mpbid 235 . . . . . . . . 9 ((1st𝑔) ∈ V → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
3315, 32ax-mp 5 . . . . . . . 8 (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
3433sbcth 3735 . . . . . . 7 ((1st𝑓) ∈ V → [(1st𝑓) / 𝑟](1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
35 sbcel1g 4321 . . . . . . 7 ((1st𝑓) ∈ V → ([(1st𝑓) / 𝑟](1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ↔ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))))
3634, 35mpbid 235 . . . . . 6 ((1st𝑓) ∈ V → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
3714, 36ax-mp 5 . . . . 5 (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
3837rgen2w 3119 . . . 4 𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
39 eqid 2798 . . . . . 6 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
40 eqid 2798 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
41 eqid 2798 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
42 eqid 2798 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
43 eqid 2798 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
4439, 40, 41, 42, 43natfval 17208 . . . . 5 (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
4544fmpo 7748 . . . 4 (∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ↔ (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
4638, 45mpbi 233 . . 3 (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
4746a1i 11 . 2 (𝜑 → (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
481, 5, 13, 47wunf 10138 1 (𝜑 → (𝐶 Nat 𝐷) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  [wsbc 3720  csb 3828  wss 3881  𝒫 cpw 4497  cop 4531   cuni 4800   × cxp 5517  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  m cmap 8389  Xcixp 8444  WUnicwun 10111  1c1 10527  4c4 11682  cdc 12086  Basecbs 16475  Hom chom 16568  compcco 16569   Func cfunc 17116   Nat cnat 17203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-pm 8392  df-ixp 8445  df-wun 10113  df-slot 16479  df-base 16481  df-hom 16581  df-func 17120  df-nat 17205
This theorem is referenced by:  catcfuccl  17361
  Copyright terms: Public domain W3C validator