MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunnat Structured version   Visualization version   GIF version

Theorem wunnat 18024
Description: A weak universe is closed under the natural transformation operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.)
Hypotheses
Ref Expression
wunnat.1 (𝜑𝑈 ∈ WUni)
wunnat.2 (𝜑𝐶𝑈)
wunnat.3 (𝜑𝐷𝑈)
Assertion
Ref Expression
wunnat (𝜑 → (𝐶 Nat 𝐷) ∈ 𝑈)

Proof of Theorem wunnat
Dummy variables 𝑓 𝑎 𝑔 𝑟 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunnat.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunnat.2 . . . 4 (𝜑𝐶𝑈)
3 wunnat.3 . . . 4 (𝜑𝐷𝑈)
41, 2, 3wunfunc 17965 . . 3 (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)
51, 4, 4wunxp 10793 . 2 (𝜑 → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ∈ 𝑈)
6 homid 17471 . . . . . . 7 Hom = Slot (Hom ‘ndx)
76, 1, 3wunstr 17235 . . . . . 6 (𝜑 → (Hom ‘𝐷) ∈ 𝑈)
81, 7wunrn 10798 . . . . 5 (𝜑 → ran (Hom ‘𝐷) ∈ 𝑈)
91, 8wununi 10775 . . . 4 (𝜑 ran (Hom ‘𝐷) ∈ 𝑈)
10 baseid 17261 . . . . 5 Base = Slot (Base‘ndx)
1110, 1, 2wunstr 17235 . . . 4 (𝜑 → (Base‘𝐶) ∈ 𝑈)
121, 9, 11wunmap 10795 . . 3 (𝜑 → ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ∈ 𝑈)
131, 12wunpw 10776 . 2 (𝜑 → 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ∈ 𝑈)
14 fvex 6933 . . . . . 6 (1st𝑓) ∈ V
15 fvex 6933 . . . . . . . . 9 (1st𝑔) ∈ V
16 ovex 7481 . . . . . . . . . . . 12 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ∈ V
17 ssrab2 4103 . . . . . . . . . . . . 13 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ⊆ X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥))
18 ovssunirn 7484 . . . . . . . . . . . . . . . 16 ((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ran (Hom ‘𝐷)
1918rgenw 3071 . . . . . . . . . . . . . . 15 𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ran (Hom ‘𝐷)
20 ss2ixp 8968 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ran (Hom ‘𝐷) → X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ X𝑥 ∈ (Base‘𝐶) ran (Hom ‘𝐷))
2119, 20ax-mp 5 . . . . . . . . . . . . . 14 X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ X𝑥 ∈ (Base‘𝐶) ran (Hom ‘𝐷)
22 fvex 6933 . . . . . . . . . . . . . . 15 (Base‘𝐶) ∈ V
23 fvex 6933 . . . . . . . . . . . . . . . . 17 (Hom ‘𝐷) ∈ V
2423rnex 7950 . . . . . . . . . . . . . . . 16 ran (Hom ‘𝐷) ∈ V
2524uniex 7776 . . . . . . . . . . . . . . 15 ran (Hom ‘𝐷) ∈ V
2622, 25ixpconst 8965 . . . . . . . . . . . . . 14 X𝑥 ∈ (Base‘𝐶) ran (Hom ‘𝐷) = ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
2721, 26sseqtri 4045 . . . . . . . . . . . . 13 X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
2817, 27sstri 4018 . . . . . . . . . . . 12 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ⊆ ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
2916, 28elpwi2 5353 . . . . . . . . . . 11 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
3029sbcth 3819 . . . . . . . . . 10 ((1st𝑔) ∈ V → [(1st𝑔) / 𝑠]{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
31 sbcel1g 4439 . . . . . . . . . 10 ((1st𝑔) ∈ V → ([(1st𝑔) / 𝑠]{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ↔ (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))))
3230, 31mpbid 232 . . . . . . . . 9 ((1st𝑔) ∈ V → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
3315, 32ax-mp 5 . . . . . . . 8 (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
3433sbcth 3819 . . . . . . 7 ((1st𝑓) ∈ V → [(1st𝑓) / 𝑟](1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
35 sbcel1g 4439 . . . . . . 7 ((1st𝑓) ∈ V → ([(1st𝑓) / 𝑟](1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ↔ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))))
3634, 35mpbid 232 . . . . . 6 ((1st𝑓) ∈ V → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
3714, 36ax-mp 5 . . . . 5 (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
3837rgen2w 3072 . . . 4 𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
39 eqid 2740 . . . . . 6 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
40 eqid 2740 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
41 eqid 2740 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
42 eqid 2740 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
43 eqid 2740 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
4439, 40, 41, 42, 43natfval 18014 . . . . 5 (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
4544fmpo 8109 . . . 4 (∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ↔ (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
4638, 45mpbi 230 . . 3 (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
4746a1i 11 . 2 (𝜑 → (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
481, 5, 13, 47wunf 10796 1 (𝜑 → (𝐶 Nat 𝐷) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  [wsbc 3804  csb 3921  wss 3976  𝒫 cpw 4622  cop 4654   cuni 4931   × cxp 5698  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  m cmap 8884  Xcixp 8955  WUnicwun 10769  ndxcnx 17240  Basecbs 17258  Hom chom 17322  compcco 17323   Func cfunc 17918   Nat cnat 18009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-wun 10771  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-dec 12759  df-slot 17229  df-ndx 17241  df-base 17259  df-hom 17335  df-func 17922  df-nat 18011
This theorem is referenced by:  catcfuccl  18186  catcfucclOLD  18187
  Copyright terms: Public domain W3C validator