Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seinxp | Structured version Visualization version GIF version |
Description: Intersection of set-like relation with Cartesian product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
seinxp | ⊢ (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp 5665 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) | |
2 | 1 | ancoms 459 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
3 | 2 | rabbidva 3413 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
4 | 3 | eleq1d 2823 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V)) |
5 | 4 | ralbiia 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V) |
6 | df-se 5545 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
7 | df-se 5545 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 ∩ cin 3886 class class class wbr 5074 Se wse 5542 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-se 5545 df-xp 5595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |