![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seinxp | Structured version Visualization version GIF version |
Description: Intersection of set-like relation with Cartesian product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
seinxp | ⊢ (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp 5778 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) | |
2 | 1 | ancoms 458 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
3 | 2 | rabbidva 3450 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
4 | 3 | eleq1d 2829 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V)) |
5 | 4 | ralbiia 3097 | . 2 ⊢ (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V) |
6 | df-se 5653 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
7 | df-se 5653 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 ∩ cin 3975 class class class wbr 5166 Se wse 5650 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-se 5653 df-xp 5706 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |