| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seinxp | Structured version Visualization version GIF version | ||
| Description: Intersection of set-like relation with Cartesian product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| seinxp | ⊢ (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp 5717 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) | |
| 2 | 1 | ancoms 458 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 3 | 2 | rabbidva 3412 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
| 4 | 3 | eleq1d 2813 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V)) |
| 5 | 4 | ralbiia 3073 | . 2 ⊢ (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V) |
| 6 | df-se 5592 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 7 | df-se 5592 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 ∩ cin 3913 class class class wbr 5107 Se wse 5589 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-se 5592 df-xp 5644 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |