| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seinxp | Structured version Visualization version GIF version | ||
| Description: Intersection of set-like relation with Cartesian product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| seinxp | ⊢ (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp 5695 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) | |
| 2 | 1 | ancoms 458 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 3 | 2 | rabbidva 3401 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
| 4 | 3 | eleq1d 2816 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V)) |
| 5 | 4 | ralbiia 3076 | . 2 ⊢ (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V) |
| 6 | df-se 5570 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 7 | df-se 5570 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ V) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ∩ cin 3901 class class class wbr 5091 Se wse 5567 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-se 5570 df-xp 5622 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |