MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngpropd Structured version   Visualization version   GIF version

Theorem rngpropd 20069
Description: If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
rngpropd.1 (𝜑𝐵 = (Base‘𝐾))
rngpropd.2 (𝜑𝐵 = (Base‘𝐿))
rngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
rngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
rngpropd (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem rngpropd
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 764 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝜑)
2 simprll 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑢𝐵)
3 simplrl 774 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝐾 ∈ Abel)
4 simprlr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑣𝐵)
5 rngpropd.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = (Base‘𝐾))
65ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝐵 = (Base‘𝐾))
74, 6eleqtrd 2834 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑣 ∈ (Base‘𝐾))
8 simprr 770 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑤𝐵)
98, 6eleqtrd 2834 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑤 ∈ (Base‘𝐾))
10 ablgrp 19695 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Abel → 𝐾 ∈ Grp)
11 eqid 2731 . . . . . . . . . . . . . . . . 17 (Base‘𝐾) = (Base‘𝐾)
12 eqid 2731 . . . . . . . . . . . . . . . . 17 (+g𝐾) = (+g𝐾)
1311, 12grpcl 18864 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
1410, 13syl3an1 1162 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Abel ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
153, 7, 9, 14syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
1615, 6eleqtrrd 2835 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) ∈ 𝐵)
17 rngpropd.4 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
1817oveqrspc2v 7439 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝐵 ∧ (𝑣(+g𝐾)𝑤) ∈ 𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)))
191, 2, 16, 18syl12anc 834 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)))
20 rngpropd.3 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2120oveqrspc2v 7439 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
221, 4, 8, 21syl12anc 834 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
2322oveq2d 7428 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)))
2419, 23eqtrd 2771 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)))
25 simplrr 775 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (mulGrp‘𝐾) ∈ Smgrp)
262, 6eleqtrd 2834 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑢 ∈ (Base‘𝐾))
27 eqid 2731 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝐾) = (mulGrp‘𝐾)
2827, 11mgpbas 20035 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
29 eqid 2731 . . . . . . . . . . . . . . . . 17 (.r𝐾) = (.r𝐾)
3027, 29mgpplusg 20033 . . . . . . . . . . . . . . . 16 (.r𝐾) = (+g‘(mulGrp‘𝐾))
3128, 30sgrpcl 18652 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Smgrp ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(.r𝐾)𝑣) ∈ (Base‘𝐾))
3225, 26, 7, 31syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) ∈ (Base‘𝐾))
3332, 6eleqtrrd 2835 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) ∈ 𝐵)
3428, 30sgrpcl 18652 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Smgrp ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑢(.r𝐾)𝑤) ∈ (Base‘𝐾))
3525, 26, 9, 34syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) ∈ (Base‘𝐾))
3635, 6eleqtrrd 2835 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) ∈ 𝐵)
3720oveqrspc2v 7439 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(.r𝐾)𝑣) ∈ 𝐵 ∧ (𝑢(.r𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)))
381, 33, 36, 37syl12anc 834 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)))
3917oveqrspc2v 7439 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(.r𝐾)𝑣) = (𝑢(.r𝐿)𝑣))
4039ad2ant2r 744 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) = (𝑢(.r𝐿)𝑣))
4117oveqrspc2v 7439 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑤𝐵)) → (𝑢(.r𝐾)𝑤) = (𝑢(.r𝐿)𝑤))
421, 2, 8, 41syl12anc 834 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) = (𝑢(.r𝐿)𝑤))
4340, 42oveq12d 7430 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)))
4438, 43eqtrd 2771 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)))
4524, 44eqeq12d 2747 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ↔ (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤))))
4611, 12grpcl 18864 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
4710, 46syl3an1 1162 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Abel ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
483, 26, 7, 47syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
4948, 6eleqtrrd 2835 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) ∈ 𝐵)
5017oveqrspc2v 7439 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(+g𝐾)𝑣) ∈ 𝐵𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤))
511, 49, 8, 50syl12anc 834 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤))
5220oveqrspc2v 7439 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
5352ad2ant2r 744 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
5453oveq1d 7427 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤) = ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤))
5551, 54eqtrd 2771 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤))
5628, 30sgrpcl 18652 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Smgrp ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(.r𝐾)𝑤) ∈ (Base‘𝐾))
5725, 7, 9, 56syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) ∈ (Base‘𝐾))
5857, 6eleqtrrd 2835 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) ∈ 𝐵)
5920oveqrspc2v 7439 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(.r𝐾)𝑤) ∈ 𝐵 ∧ (𝑣(.r𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)))
601, 36, 58, 59syl12anc 834 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)))
6117oveqrspc2v 7439 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(.r𝐾)𝑤) = (𝑣(.r𝐿)𝑤))
621, 4, 8, 61syl12anc 834 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) = (𝑣(.r𝐿)𝑤))
6342, 62oveq12d 7430 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))
6460, 63eqtrd 2771 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))
6555, 64eqeq12d 2747 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) ↔ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))
6645, 65anbi12d 630 . . . . . . . . 9 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
6766anassrs 467 . . . . . . . 8 ((((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
6867ralbidva 3174 . . . . . . 7 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ (𝑢𝐵𝑣𝐵)) → (∀𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
69682ralbidva 3215 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
705adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → 𝐵 = (Base‘𝐾))
7170raleqdv 3324 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
7270, 71raleqbidv 3341 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
7370, 72raleqbidv 3341 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
74 rngpropd.2 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐿))
7574adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → 𝐵 = (Base‘𝐿))
7675raleqdv 3324 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7775, 76raleqbidv 3341 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7875, 77raleqbidv 3341 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7969, 73, 783bitr3d 309 . . . . 5 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
8079pm5.32da 578 . . . 4 (𝜑 → (((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
81 df-3an 1088 . . . 4 ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
82 df-3an 1088 . . . 4 ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
8380, 81, 823bitr4g 314 . . 3 (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
845, 74, 20ablpropd 19702 . . . 4 (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
85 fvexd 6906 . . . . 5 (𝜑 → (mulGrp‘𝐾) ∈ V)
86 fvexd 6906 . . . . 5 (𝜑 → (mulGrp‘𝐿) ∈ V)
8728a1i 11 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
88 eqid 2731 . . . . . . . 8 (mulGrp‘𝐿) = (mulGrp‘𝐿)
89 eqid 2731 . . . . . . . 8 (Base‘𝐿) = (Base‘𝐿)
9088, 89mgpbas 20035 . . . . . . 7 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
9174, 90eqtrdi 2787 . . . . . 6 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
925, 91eqtr3d 2773 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐿)))
9317ex 412 . . . . . . 7 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)))
945eleq2d 2818 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
955eleq2d 2818 . . . . . . . . 9 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
9694, 95anbi12d 630 . . . . . . . 8 (𝜑 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))))
9796bicomd 222 . . . . . . 7 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ (𝑥𝐵𝑦𝐵)))
9830a1i 11 . . . . . . . . . 10 (𝜑 → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
9998eqcomd 2737 . . . . . . . . 9 (𝜑 → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
10099oveqd 7429 . . . . . . . 8 (𝜑 → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(.r𝐾)𝑦))
101 eqid 2731 . . . . . . . . . . . 12 (.r𝐿) = (.r𝐿)
10288, 101mgpplusg 20033 . . . . . . . . . . 11 (.r𝐿) = (+g‘(mulGrp‘𝐿))
103102a1i 11 . . . . . . . . . 10 (𝜑 → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
104103eqcomd 2737 . . . . . . . . 9 (𝜑 → (+g‘(mulGrp‘𝐿)) = (.r𝐿))
105104oveqd 7429 . . . . . . . 8 (𝜑 → (𝑥(+g‘(mulGrp‘𝐿))𝑦) = (𝑥(.r𝐿)𝑦))
106100, 105eqeq12d 2747 . . . . . . 7 (𝜑 → ((𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) ↔ (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)))
10793, 97, 1063imtr4d 294 . . . . . 6 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)))
108107imp 406 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
10985, 86, 87, 92, 108sgrppropd 18657 . . . 4 (𝜑 → ((mulGrp‘𝐾) ∈ Smgrp ↔ (mulGrp‘𝐿) ∈ Smgrp))
11084, 1093anbi12d 1436 . . 3 (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
11183, 110bitrd 279 . 2 (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
11211, 27, 12, 29isrng 20049 . 2 (𝐾 ∈ Rng ↔ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
113 eqid 2731 . . 3 (+g𝐿) = (+g𝐿)
11489, 88, 113, 101isrng 20049 . 2 (𝐿 ∈ Rng ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
115111, 112, 1143bitr4g 314 1 (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  Vcvv 3473  cfv 6543  (class class class)co 7412  Basecbs 17149  +gcplusg 17202  .rcmulr 17203  Smgrpcsgrp 18644  Grpcgrp 18856  Abelcabl 19691  mulGrpcmgp 20029  Rngcrng 20047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-plusg 17215  df-0g 17392  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-grp 18859  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048
This theorem is referenced by:  opprrngb  20238  subrngpropd  20457
  Copyright terms: Public domain W3C validator