MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngpropd Structured version   Visualization version   GIF version

Theorem rngpropd 20077
Description: If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
rngpropd.1 (𝜑𝐵 = (Base‘𝐾))
rngpropd.2 (𝜑𝐵 = (Base‘𝐿))
rngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
rngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
rngpropd (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem rngpropd
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝜑)
2 simprll 778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑢𝐵)
3 simplrl 776 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝐾 ∈ Abel)
4 simprlr 779 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑣𝐵)
5 rngpropd.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = (Base‘𝐾))
65ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝐵 = (Base‘𝐾))
74, 6eleqtrd 2830 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑣 ∈ (Base‘𝐾))
8 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑤𝐵)
98, 6eleqtrd 2830 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑤 ∈ (Base‘𝐾))
10 ablgrp 19682 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Abel → 𝐾 ∈ Grp)
11 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘𝐾) = (Base‘𝐾)
12 eqid 2729 . . . . . . . . . . . . . . . . 17 (+g𝐾) = (+g𝐾)
1311, 12grpcl 18838 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
1410, 13syl3an1 1163 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Abel ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
153, 7, 9, 14syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
1615, 6eleqtrrd 2831 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) ∈ 𝐵)
17 rngpropd.4 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
1817oveqrspc2v 7380 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝐵 ∧ (𝑣(+g𝐾)𝑤) ∈ 𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)))
191, 2, 16, 18syl12anc 836 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)))
20 rngpropd.3 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2120oveqrspc2v 7380 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
221, 4, 8, 21syl12anc 836 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
2322oveq2d 7369 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)))
2419, 23eqtrd 2764 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)))
25 simplrr 777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (mulGrp‘𝐾) ∈ Smgrp)
262, 6eleqtrd 2830 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑢 ∈ (Base‘𝐾))
27 eqid 2729 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝐾) = (mulGrp‘𝐾)
2827, 11mgpbas 20048 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
29 eqid 2729 . . . . . . . . . . . . . . . . 17 (.r𝐾) = (.r𝐾)
3027, 29mgpplusg 20047 . . . . . . . . . . . . . . . 16 (.r𝐾) = (+g‘(mulGrp‘𝐾))
3128, 30sgrpcl 18618 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Smgrp ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(.r𝐾)𝑣) ∈ (Base‘𝐾))
3225, 26, 7, 31syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) ∈ (Base‘𝐾))
3332, 6eleqtrrd 2831 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) ∈ 𝐵)
3428, 30sgrpcl 18618 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Smgrp ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑢(.r𝐾)𝑤) ∈ (Base‘𝐾))
3525, 26, 9, 34syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) ∈ (Base‘𝐾))
3635, 6eleqtrrd 2831 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) ∈ 𝐵)
3720oveqrspc2v 7380 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(.r𝐾)𝑣) ∈ 𝐵 ∧ (𝑢(.r𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)))
381, 33, 36, 37syl12anc 836 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)))
3917oveqrspc2v 7380 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(.r𝐾)𝑣) = (𝑢(.r𝐿)𝑣))
4039ad2ant2r 747 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) = (𝑢(.r𝐿)𝑣))
4117oveqrspc2v 7380 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑤𝐵)) → (𝑢(.r𝐾)𝑤) = (𝑢(.r𝐿)𝑤))
421, 2, 8, 41syl12anc 836 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) = (𝑢(.r𝐿)𝑤))
4340, 42oveq12d 7371 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)))
4438, 43eqtrd 2764 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)))
4524, 44eqeq12d 2745 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ↔ (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤))))
4611, 12grpcl 18838 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
4710, 46syl3an1 1163 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Abel ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
483, 26, 7, 47syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
4948, 6eleqtrrd 2831 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) ∈ 𝐵)
5017oveqrspc2v 7380 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(+g𝐾)𝑣) ∈ 𝐵𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤))
511, 49, 8, 50syl12anc 836 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤))
5220oveqrspc2v 7380 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
5352ad2ant2r 747 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
5453oveq1d 7368 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤) = ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤))
5551, 54eqtrd 2764 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤))
5628, 30sgrpcl 18618 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Smgrp ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(.r𝐾)𝑤) ∈ (Base‘𝐾))
5725, 7, 9, 56syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) ∈ (Base‘𝐾))
5857, 6eleqtrrd 2831 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) ∈ 𝐵)
5920oveqrspc2v 7380 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(.r𝐾)𝑤) ∈ 𝐵 ∧ (𝑣(.r𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)))
601, 36, 58, 59syl12anc 836 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)))
6117oveqrspc2v 7380 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(.r𝐾)𝑤) = (𝑣(.r𝐿)𝑤))
621, 4, 8, 61syl12anc 836 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) = (𝑣(.r𝐿)𝑤))
6342, 62oveq12d 7371 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))
6460, 63eqtrd 2764 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))
6555, 64eqeq12d 2745 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) ↔ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))
6645, 65anbi12d 632 . . . . . . . . 9 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
6766anassrs 467 . . . . . . . 8 ((((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
6867ralbidva 3150 . . . . . . 7 (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ (𝑢𝐵𝑣𝐵)) → (∀𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
69682ralbidva 3191 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
705adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → 𝐵 = (Base‘𝐾))
7170raleqdv 3290 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
7270, 71raleqbidv 3310 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
7370, 72raleqbidv 3310 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
74 rngpropd.2 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐿))
7574adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → 𝐵 = (Base‘𝐿))
7675raleqdv 3290 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7775, 76raleqbidv 3310 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7875, 77raleqbidv 3310 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7969, 73, 783bitr3d 309 . . . . 5 ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
8079pm5.32da 579 . . . 4 (𝜑 → (((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
81 df-3an 1088 . . . 4 ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
82 df-3an 1088 . . . 4 ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
8380, 81, 823bitr4g 314 . . 3 (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
845, 74, 20ablpropd 19689 . . . 4 (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
85 fvexd 6841 . . . . 5 (𝜑 → (mulGrp‘𝐾) ∈ V)
86 fvexd 6841 . . . . 5 (𝜑 → (mulGrp‘𝐿) ∈ V)
8728a1i 11 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
88 eqid 2729 . . . . . . . 8 (mulGrp‘𝐿) = (mulGrp‘𝐿)
89 eqid 2729 . . . . . . . 8 (Base‘𝐿) = (Base‘𝐿)
9088, 89mgpbas 20048 . . . . . . 7 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
9174, 90eqtrdi 2780 . . . . . 6 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
925, 91eqtr3d 2766 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐿)))
9317ex 412 . . . . . . 7 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)))
945eleq2d 2814 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
955eleq2d 2814 . . . . . . . . 9 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
9694, 95anbi12d 632 . . . . . . . 8 (𝜑 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))))
9796bicomd 223 . . . . . . 7 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ (𝑥𝐵𝑦𝐵)))
9830a1i 11 . . . . . . . . . 10 (𝜑 → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
9998eqcomd 2735 . . . . . . . . 9 (𝜑 → (+g‘(mulGrp‘𝐾)) = (.r𝐾))
10099oveqd 7370 . . . . . . . 8 (𝜑 → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(.r𝐾)𝑦))
101 eqid 2729 . . . . . . . . . . . 12 (.r𝐿) = (.r𝐿)
10288, 101mgpplusg 20047 . . . . . . . . . . 11 (.r𝐿) = (+g‘(mulGrp‘𝐿))
103102a1i 11 . . . . . . . . . 10 (𝜑 → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
104103eqcomd 2735 . . . . . . . . 9 (𝜑 → (+g‘(mulGrp‘𝐿)) = (.r𝐿))
105104oveqd 7370 . . . . . . . 8 (𝜑 → (𝑥(+g‘(mulGrp‘𝐿))𝑦) = (𝑥(.r𝐿)𝑦))
106100, 105eqeq12d 2745 . . . . . . 7 (𝜑 → ((𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) ↔ (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)))
10793, 97, 1063imtr4d 294 . . . . . 6 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)))
108107imp 406 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
10985, 86, 87, 92, 108sgrppropd 18623 . . . 4 (𝜑 → ((mulGrp‘𝐾) ∈ Smgrp ↔ (mulGrp‘𝐿) ∈ Smgrp))
11084, 1093anbi12d 1439 . . 3 (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
11183, 110bitrd 279 . 2 (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
11211, 27, 12, 29isrng 20057 . 2 (𝐾 ∈ Rng ↔ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
113 eqid 2729 . . 3 (+g𝐿) = (+g𝐿)
11489, 88, 113, 101isrng 20057 . 2 (𝐿 ∈ Rng ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
115111, 112, 1143bitr4g 314 1 (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Smgrpcsgrp 18610  Grpcgrp 18830  Abelcabl 19678  mulGrpcmgp 20043  Rngcrng 20055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056
This theorem is referenced by:  opprrngb  20249  subrngpropd  20471
  Copyright terms: Public domain W3C validator