Step | Hyp | Ref
| Expression |
1 | | simpll 765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝜑) |
2 | | simprll 777 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ 𝐵) |
3 | | simplrl 775 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐾 ∈ Abel) |
4 | | simprlr 778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ 𝐵) |
5 | | rngpropd.1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
6 | 5 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐵 = (Base‘𝐾)) |
7 | 4, 6 | eleqtrd 2835 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ (Base‘𝐾)) |
8 | | simprr 771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
9 | 8, 6 | eleqtrd 2835 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ (Base‘𝐾)) |
10 | | ablgrp 19652 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ Abel → 𝐾 ∈ Grp) |
11 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐾) =
(Base‘𝐾) |
12 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘𝐾) = (+g‘𝐾) |
13 | 11, 12 | grpcl 18826 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g‘𝐾)𝑤) ∈ (Base‘𝐾)) |
14 | 10, 13 | syl3an1 1163 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Abel ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g‘𝐾)𝑤) ∈ (Base‘𝐾)) |
15 | 3, 7, 9, 14 | syl3anc 1371 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) ∈ (Base‘𝐾)) |
16 | 15, 6 | eleqtrrd 2836 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) ∈ 𝐵) |
17 | | rngpropd.4 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
18 | 17 | oveqrspc2v 7435 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ (𝑣(+g‘𝐾)𝑤) ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤))) |
19 | 1, 2, 16, 18 | syl12anc 835 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤))) |
20 | | rngpropd.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
21 | 20 | oveqrspc2v 7435 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) |
22 | 1, 4, 8, 21 | syl12anc 835 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) |
23 | 22 | oveq2d 7424 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤))) |
24 | 19, 23 | eqtrd 2772 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤))) |
25 | | simplrr 776 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (mulGrp‘𝐾) ∈ Smgrp) |
26 | 2, 6 | eleqtrd 2835 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ (Base‘𝐾)) |
27 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
28 | 27, 11 | mgpbas 19992 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾)) |
29 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
⊢
(.r‘𝐾) = (.r‘𝐾) |
30 | 27, 29 | mgpplusg 19990 |
. . . . . . . . . . . . . . . 16
⊢
(.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
31 | 28, 30 | sgrpcl 18616 |
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Smgrp ∧ 𝑢 ∈
(Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(.r‘𝐾)𝑣) ∈ (Base‘𝐾)) |
32 | 25, 26, 7, 31 | syl3anc 1371 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) ∈ (Base‘𝐾)) |
33 | 32, 6 | eleqtrrd 2836 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) ∈ 𝐵) |
34 | 28, 30 | sgrpcl 18616 |
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Smgrp ∧ 𝑢 ∈
(Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑢(.r‘𝐾)𝑤) ∈ (Base‘𝐾)) |
35 | 25, 26, 9, 34 | syl3anc 1371 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) ∈ (Base‘𝐾)) |
36 | 35, 6 | eleqtrrd 2836 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) ∈ 𝐵) |
37 | 20 | oveqrspc2v 7435 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(.r‘𝐾)𝑣) ∈ 𝐵 ∧ (𝑢(.r‘𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤))) |
38 | 1, 33, 36, 37 | syl12anc 835 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤))) |
39 | 17 | oveqrspc2v 7435 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(.r‘𝐿)𝑣)) |
40 | 39 | ad2ant2r 745 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(.r‘𝐿)𝑣)) |
41 | 17 | oveqrspc2v 7435 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(.r‘𝐿)𝑤)) |
42 | 1, 2, 8, 41 | syl12anc 835 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(.r‘𝐿)𝑤)) |
43 | 40, 42 | oveq12d 7426 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤))) |
44 | 38, 43 | eqtrd 2772 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤))) |
45 | 24, 44 | eqeq12d 2748 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ↔ (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)))) |
46 | 11, 12 | grpcl 18826 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾)) |
47 | 10, 46 | syl3an1 1163 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Abel ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾)) |
48 | 3, 26, 7, 47 | syl3anc 1371 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾)) |
49 | 48, 6 | eleqtrrd 2836 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) ∈ 𝐵) |
50 | 17 | oveqrspc2v 7435 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤)) |
51 | 1, 49, 8, 50 | syl12anc 835 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤)) |
52 | 20 | oveqrspc2v 7435 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
53 | 52 | ad2ant2r 745 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
54 | 53 | oveq1d 7423 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤) = ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤)) |
55 | 51, 54 | eqtrd 2772 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤)) |
56 | 28, 30 | sgrpcl 18616 |
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Smgrp ∧ 𝑣 ∈
(Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(.r‘𝐾)𝑤) ∈ (Base‘𝐾)) |
57 | 25, 7, 9, 56 | syl3anc 1371 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) ∈ (Base‘𝐾)) |
58 | 57, 6 | eleqtrrd 2836 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) ∈ 𝐵) |
59 | 20 | oveqrspc2v 7435 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(.r‘𝐾)𝑤) ∈ 𝐵 ∧ (𝑣(.r‘𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤))) |
60 | 1, 36, 58, 59 | syl12anc 835 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤))) |
61 | 17 | oveqrspc2v 7435 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(.r‘𝐿)𝑤)) |
62 | 1, 4, 8, 61 | syl12anc 835 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(.r‘𝐿)𝑤)) |
63 | 42, 62 | oveq12d 7426 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) |
64 | 60, 63 | eqtrd 2772 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) |
65 | 55, 64 | eqeq12d 2748 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) ↔ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) |
66 | 45, 65 | anbi12d 631 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
67 | 66 | anassrs 468 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
68 | 67 | ralbidva 3175 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
69 | 68 | 2ralbidva 3216 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
70 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → 𝐵 = (Base‘𝐾)) |
71 | 70 | raleqdv 3325 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
72 | 70, 71 | raleqbidv 3342 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
73 | 70, 72 | raleqbidv 3342 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
74 | | rngpropd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
75 | 74 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) → 𝐵 = (Base‘𝐿)) |
76 | 75 | raleqdv 3325 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
77 | 75, 76 | raleqbidv 3342 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
78 | 75, 77 | raleqbidv 3342 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
79 | 69, 73, 78 | 3bitr3d 308 |
. . . . 5
⊢ ((𝜑 ∧ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp)) →
(∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
80 | 79 | pm5.32da 579 |
. . . 4
⊢ (𝜑 → (((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
81 | | df-3an 1089 |
. . . 4
⊢ ((𝐾 ∈ Abel ∧
(mulGrp‘𝐾) ∈
Smgrp ∧ ∀𝑢
∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
82 | | df-3an 1089 |
. . . 4
⊢ ((𝐾 ∈ Abel ∧
(mulGrp‘𝐾) ∈
Smgrp ∧ ∀𝑢
∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
83 | 80, 81, 82 | 3bitr4g 313 |
. . 3
⊢ (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ (𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
84 | 5, 74, 20 | ablpropd 19659 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
85 | | fvexd 6906 |
. . . . 5
⊢ (𝜑 → (mulGrp‘𝐾) ∈ V) |
86 | | fvexd 6906 |
. . . . 5
⊢ (𝜑 → (mulGrp‘𝐿) ∈ V) |
87 | 28 | a1i 11 |
. . . . 5
⊢ (𝜑 → (Base‘𝐾) =
(Base‘(mulGrp‘𝐾))) |
88 | | eqid 2732 |
. . . . . . . 8
⊢
(mulGrp‘𝐿) =
(mulGrp‘𝐿) |
89 | | eqid 2732 |
. . . . . . . 8
⊢
(Base‘𝐿) =
(Base‘𝐿) |
90 | 88, 89 | mgpbas 19992 |
. . . . . . 7
⊢
(Base‘𝐿) =
(Base‘(mulGrp‘𝐿)) |
91 | 74, 90 | eqtrdi 2788 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
92 | 5, 91 | eqtr3d 2774 |
. . . . 5
⊢ (𝜑 → (Base‘𝐾) =
(Base‘(mulGrp‘𝐿))) |
93 | 17 | ex 413 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦))) |
94 | 5 | eleq2d 2819 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐾))) |
95 | 5 | eleq2d 2819 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐾))) |
96 | 94, 95 | anbi12d 631 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)))) |
97 | 96 | bicomd 222 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
98 | 30 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) |
99 | 98 | eqcomd 2738 |
. . . . . . . . 9
⊢ (𝜑 →
(+g‘(mulGrp‘𝐾)) = (.r‘𝐾)) |
100 | 99 | oveqd 7425 |
. . . . . . . 8
⊢ (𝜑 → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(.r‘𝐾)𝑦)) |
101 | | eqid 2732 |
. . . . . . . . . . . 12
⊢
(.r‘𝐿) = (.r‘𝐿) |
102 | 88, 101 | mgpplusg 19990 |
. . . . . . . . . . 11
⊢
(.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
103 | 102 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (.r‘𝐿) =
(+g‘(mulGrp‘𝐿))) |
104 | 103 | eqcomd 2738 |
. . . . . . . . 9
⊢ (𝜑 →
(+g‘(mulGrp‘𝐿)) = (.r‘𝐿)) |
105 | 104 | oveqd 7425 |
. . . . . . . 8
⊢ (𝜑 → (𝑥(+g‘(mulGrp‘𝐿))𝑦) = (𝑥(.r‘𝐿)𝑦)) |
106 | 100, 105 | eqeq12d 2748 |
. . . . . . 7
⊢ (𝜑 → ((𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) ↔ (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦))) |
107 | 93, 97, 106 | 3imtr4d 293 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))) |
108 | 107 | imp 407 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
109 | 85, 86, 87, 92, 108 | sgrppropd 18621 |
. . . 4
⊢ (𝜑 → ((mulGrp‘𝐾) ∈ Smgrp ↔
(mulGrp‘𝐿) ∈
Smgrp)) |
110 | 84, 109 | 3anbi12d 1437 |
. . 3
⊢ (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
111 | 83, 110 | bitrd 278 |
. 2
⊢ (𝜑 → ((𝐾 ∈ Abel ∧ (mulGrp‘𝐾) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ (𝐿 ∈ Abel ∧ (mulGrp‘𝐿) ∈ Smgrp ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
112 | 11, 27, 12, 29 | isrng 46640 |
. 2
⊢ (𝐾 ∈ Rng ↔ (𝐾 ∈ Abel ∧
(mulGrp‘𝐾) ∈
Smgrp ∧ ∀𝑢
∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
113 | | eqid 2732 |
. . 3
⊢
(+g‘𝐿) = (+g‘𝐿) |
114 | 89, 88, 113, 101 | isrng 46640 |
. 2
⊢ (𝐿 ∈ Rng ↔ (𝐿 ∈ Abel ∧
(mulGrp‘𝐿) ∈
Smgrp ∧ ∀𝑢
∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
115 | 111, 112,
114 | 3bitr4g 313 |
1
⊢ (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng)) |