MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpass Structured version   Visualization version   GIF version

Theorem sgrpass 18763
Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.)
Hypotheses
Ref Expression
sgrpass.b 𝐵 = (Base‘𝐺)
sgrpass.o = (+g𝐺)
Assertion
Ref Expression
sgrpass ((𝐺 ∈ Smgrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))

Proof of Theorem sgrpass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpass.b . . . 4 𝐵 = (Base‘𝐺)
2 sgrpass.o . . . 4 = (+g𝐺)
31, 2issgrp 18758 . . 3 (𝐺 ∈ Smgrp ↔ (𝐺 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
4 oveq1 7455 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
54oveq1d 7463 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 𝑦) 𝑧) = ((𝑋 𝑦) 𝑧))
6 oveq1 7455 . . . . . 6 (𝑥 = 𝑋 → (𝑥 (𝑦 𝑧)) = (𝑋 (𝑦 𝑧)))
75, 6eqeq12d 2756 . . . . 5 (𝑥 = 𝑋 → (((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
8 oveq2 7456 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
98oveq1d 7463 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 𝑦) 𝑧) = ((𝑋 𝑌) 𝑧))
10 oveq1 7455 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
1110oveq2d 7464 . . . . . 6 (𝑦 = 𝑌 → (𝑋 (𝑦 𝑧)) = (𝑋 (𝑌 𝑧)))
129, 11eqeq12d 2756 . . . . 5 (𝑦 = 𝑌 → (((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)) ↔ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧))))
13 oveq2 7456 . . . . . 6 (𝑧 = 𝑍 → ((𝑋 𝑌) 𝑧) = ((𝑋 𝑌) 𝑍))
14 oveq2 7456 . . . . . . 7 (𝑧 = 𝑍 → (𝑌 𝑧) = (𝑌 𝑍))
1514oveq2d 7464 . . . . . 6 (𝑧 = 𝑍 → (𝑋 (𝑌 𝑧)) = (𝑋 (𝑌 𝑍)))
1613, 15eqeq12d 2756 . . . . 5 (𝑧 = 𝑍 → (((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧)) ↔ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
177, 12, 16rspc3v 3651 . . . 4 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
1817com12 32 . . 3 (∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
193, 18simplbiim 504 . 2 (𝐺 ∈ Smgrp → ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
2019imp 406 1 ((𝐺 ∈ Smgrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Mgmcmgm 18676  Smgrpcsgrp 18756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-sgrp 18757
This theorem is referenced by:  prdssgrpd  18771  mndass  18781  gsumsgrpccat  18875  dfgrp2  19002  dfgrp3lem  19078  dfgrp3e  19080  mulgnndir  19143  cntzsgrpcl  19374  rngass  20186  rnglidlmsgrp  21279
  Copyright terms: Public domain W3C validator