![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsplusgsgrpcl | Structured version Visualization version GIF version |
Description: Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025.) |
Ref | Expression |
---|---|
prdsplusgsgrpcl.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsplusgsgrpcl.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsplusgsgrpcl.p | ⊢ + = (+g‘𝑌) |
prdsplusgsgrpcl.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsplusgsgrpcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsplusgsgrpcl.r | ⊢ (𝜑 → 𝑅:𝐼⟶Smgrp) |
prdsplusgsgrpcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
prdsplusgsgrpcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
prdsplusgsgrpcl | ⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsplusgsgrpcl.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsplusgsgrpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsplusgsgrpcl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | prdsplusgsgrpcl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | prdsplusgsgrpcl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Smgrp) | |
6 | 5 | ffnd 6719 | . . 3 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
7 | prdsplusgsgrpcl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
8 | prdsplusgsgrpcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
9 | prdsplusgsgrpcl.p | . . 3 ⊢ + = (+g‘𝑌) | |
10 | 1, 2, 3, 4, 6, 7, 8, 9 | prdsplusgval 17425 | . 2 ⊢ (𝜑 → (𝐹 + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
11 | 5 | ffvelcdmda 7087 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ Smgrp) |
12 | 3 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
13 | 4 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
14 | 6 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 Fn 𝐼) |
15 | 7 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ 𝐵) |
16 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
17 | 1, 2, 12, 13, 14, 15, 16 | prdsbasprj 17424 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
18 | 8 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ 𝐵) |
19 | 1, 2, 12, 13, 14, 18, 16 | prdsbasprj 17424 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
20 | eqid 2730 | . . . . . 6 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
21 | eqid 2730 | . . . . . 6 ⊢ (+g‘(𝑅‘𝑥)) = (+g‘(𝑅‘𝑥)) | |
22 | 20, 21 | sgrpcl 18653 | . . . . 5 ⊢ (((𝑅‘𝑥) ∈ Smgrp ∧ (𝐹‘𝑥) ∈ (Base‘(𝑅‘𝑥)) ∧ (𝐺‘𝑥) ∈ (Base‘(𝑅‘𝑥))) → ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
23 | 11, 17, 19, 22 | syl3anc 1369 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
24 | 23 | ralrimiva 3144 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
25 | 1, 2, 3, 4, 6 | prdsbasmpt 17422 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)) ∈ (Base‘(𝑅‘𝑥)))) |
26 | 24, 25 | mpbird 256 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ 𝐵) |
27 | 10, 26 | eqeltrd 2831 | 1 ⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ↦ cmpt 5232 Fn wfn 6539 ⟶wf 6540 ‘cfv 6544 (class class class)co 7413 Basecbs 17150 +gcplusg 17203 Xscprds 17397 Smgrpcsgrp 18645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-fz 13491 df-struct 17086 df-slot 17121 df-ndx 17133 df-base 17151 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-hom 17227 df-cco 17228 df-prds 17399 df-mgm 18567 df-sgrp 18646 |
This theorem is referenced by: prdssgrpd 18660 |
Copyright terms: Public domain | W3C validator |