| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simplr 769 | . . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐾 ∈ Smgrp) | 
| 2 |  | simprl 771 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | 
| 3 |  | sgrppropd.1 | . . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | 
| 4 | 3 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐵 = (Base‘𝐾)) | 
| 5 | 2, 4 | eleqtrd 2843 | . . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝐾)) | 
| 6 |  | simprr 773 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | 
| 7 | 6, 4 | eleqtrd 2843 | . . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ (Base‘𝐾)) | 
| 8 |  | eqid 2737 | . . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 9 |  | eqid 2737 | . . . . . . 7
⊢
(+g‘𝐾) = (+g‘𝐾) | 
| 10 | 8, 9 | sgrpcl 18739 | . . . . . 6
⊢ ((𝐾 ∈ Smgrp ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾)) | 
| 11 | 1, 5, 7, 10 | syl3anc 1373 | . . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾)) | 
| 12 | 11, 4 | eleqtrrd 2844 | . . . 4
⊢ (((𝜑 ∧ 𝐾 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) | 
| 13 | 12 | ralrimivva 3202 | . . 3
⊢ ((𝜑 ∧ 𝐾 ∈ Smgrp) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) | 
| 14 | 13 | ex 412 | . 2
⊢ (𝜑 → (𝐾 ∈ Smgrp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵)) | 
| 15 |  | simplr 769 | . . . . . 6
⊢ (((𝜑 ∧ 𝐿 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐿 ∈ Smgrp) | 
| 16 |  | simprl 771 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐿 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | 
| 17 |  | sgrppropd.2 | . . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | 
| 18 | 17 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐿 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐵 = (Base‘𝐿)) | 
| 19 | 16, 18 | eleqtrd 2843 | . . . . . 6
⊢ (((𝜑 ∧ 𝐿 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝐿)) | 
| 20 |  | simprr 773 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐿 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | 
| 21 | 20, 18 | eleqtrd 2843 | . . . . . 6
⊢ (((𝜑 ∧ 𝐿 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ (Base‘𝐿)) | 
| 22 |  | eqid 2737 | . . . . . . 7
⊢
(Base‘𝐿) =
(Base‘𝐿) | 
| 23 |  | eqid 2737 | . . . . . . 7
⊢
(+g‘𝐿) = (+g‘𝐿) | 
| 24 | 22, 23 | sgrpcl 18739 | . . . . . 6
⊢ ((𝐿 ∈ Smgrp ∧ 𝑥 ∈ (Base‘𝐿) ∧ 𝑦 ∈ (Base‘𝐿)) → (𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿)) | 
| 25 | 15, 19, 21, 24 | syl3anc 1373 | . . . . 5
⊢ (((𝜑 ∧ 𝐿 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿)) | 
| 26 |  | sgrppropd.3 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | 
| 27 | 26 | adantlr 715 | . . . . 5
⊢ (((𝜑 ∧ 𝐿 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | 
| 28 | 25, 27, 18 | 3eltr4d 2856 | . . . 4
⊢ (((𝜑 ∧ 𝐿 ∈ Smgrp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) | 
| 29 | 28 | ralrimivva 3202 | . . 3
⊢ ((𝜑 ∧ 𝐿 ∈ Smgrp) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) | 
| 30 | 29 | ex 412 | . 2
⊢ (𝜑 → (𝐿 ∈ Smgrp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵)) | 
| 31 |  | sgrppropd.k | . . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑉) | 
| 32 | 8, 9 | issgrpv 18734 | . . . . . 6
⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Smgrp ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))))) | 
| 33 | 31, 32 | syl 17 | . . . . 5
⊢ (𝜑 → (𝐾 ∈ Smgrp ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))))) | 
| 34 | 33 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (𝐾 ∈ Smgrp ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))))) | 
| 35 | 26 | oveqrspc2v 7458 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) | 
| 36 | 35 | adantlr 715 | . . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) | 
| 37 | 36 | eleq1d 2826 | . . . . . . 7
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ↔ (𝑢(+g‘𝐿)𝑣) ∈ 𝐵)) | 
| 38 |  | simplll 775 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → 𝜑) | 
| 39 |  | simplrl 777 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → 𝑢 ∈ 𝐵) | 
| 40 |  | simplrr 778 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → 𝑣 ∈ 𝐵) | 
| 41 |  | simpllr 776 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) | 
| 42 |  | ovrspc2v 7457 | . . . . . . . . . . . 12
⊢ (((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (𝑢(+g‘𝐾)𝑣) ∈ 𝐵) | 
| 43 | 39, 40, 41, 42 | syl21anc 838 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐾)𝑣) ∈ 𝐵) | 
| 44 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → 𝑤 ∈ 𝐵) | 
| 45 | 26 | oveqrspc2v 7458 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(+g‘𝐿)𝑤)) | 
| 46 | 38, 43, 44, 45 | syl12anc 837 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(+g‘𝐿)𝑤)) | 
| 47 | 38, 39, 40, 35 | syl12anc 837 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) | 
| 48 | 47 | oveq1d 7446 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑣)(+g‘𝐿)𝑤) = ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤)) | 
| 49 | 46, 48 | eqtrd 2777 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤)) | 
| 50 |  | ovrspc2v 7457 | . . . . . . . . . . . 12
⊢ (((𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (𝑣(+g‘𝐾)𝑤) ∈ 𝐵) | 
| 51 | 40, 44, 41, 50 | syl21anc 838 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑣(+g‘𝐾)𝑤) ∈ 𝐵) | 
| 52 | 26 | oveqrspc2v 7458 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ (𝑣(+g‘𝐾)𝑤) ∈ 𝐵)) → (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐾)𝑤))) | 
| 53 | 38, 39, 51, 52 | syl12anc 837 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐾)𝑤))) | 
| 54 | 26 | oveqrspc2v 7458 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) | 
| 55 | 38, 40, 44, 54 | syl12anc 837 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) | 
| 56 | 55 | oveq2d 7447 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐿)(𝑣(+g‘𝐾)𝑤)) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) | 
| 57 | 53, 56 | eqtrd 2777 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) | 
| 58 | 49, 57 | eqeq12d 2753 | . . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) ↔ ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤)))) | 
| 59 | 58 | ralbidva 3176 | . . . . . . 7
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) ↔ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤)))) | 
| 60 | 37, 59 | anbi12d 632 | . . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) | 
| 61 | 60 | 2ralbidva 3219 | . . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) | 
| 62 | 3 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → 𝐵 = (Base‘𝐾)) | 
| 63 | 62 | eleq2d 2827 | . . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ↔ (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾))) | 
| 64 | 62 | raleqdv 3326 | . . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤)))) | 
| 65 | 63, 64 | anbi12d 632 | . . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))))) | 
| 66 | 62, 65 | raleqbidv 3346 | . . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))))) | 
| 67 | 62, 66 | raleqbidv 3346 | . . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))))) | 
| 68 | 17 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → 𝐵 = (Base‘𝐿)) | 
| 69 | 68 | eleq2d 2827 | . . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ↔ (𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿))) | 
| 70 | 68 | raleqdv 3326 | . . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤)))) | 
| 71 | 69, 70 | anbi12d 632 | . . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ↔ ((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) | 
| 72 | 68, 71 | raleqbidv 3346 | . . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) | 
| 73 | 68, 72 | raleqbidv 3346 | . . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) | 
| 74 | 61, 67, 73 | 3bitr3d 309 | . . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g‘𝐾)𝑣)(+g‘𝐾)𝑤) = (𝑢(+g‘𝐾)(𝑣(+g‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) | 
| 75 |  | sgrppropd.l | . . . . . . 7
⊢ (𝜑 → 𝐿 ∈ 𝑊) | 
| 76 | 22, 23 | issgrpv 18734 | . . . . . . 7
⊢ (𝐿 ∈ 𝑊 → (𝐿 ∈ Smgrp ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) | 
| 77 | 75, 76 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝐿 ∈ Smgrp ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))))) | 
| 78 | 77 | bicomd 223 | . . . . 5
⊢ (𝜑 → (∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ↔ 𝐿 ∈ Smgrp)) | 
| 79 | 78 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g‘𝐿)𝑣)(+g‘𝐿)𝑤) = (𝑢(+g‘𝐿)(𝑣(+g‘𝐿)𝑤))) ↔ 𝐿 ∈ Smgrp)) | 
| 80 | 34, 74, 79 | 3bitrd 305 | . . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵) → (𝐾 ∈ Smgrp ↔ 𝐿 ∈ Smgrp)) | 
| 81 | 80 | ex 412 | . 2
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) ∈ 𝐵 → (𝐾 ∈ Smgrp ↔ 𝐿 ∈ Smgrp))) | 
| 82 | 14, 30, 81 | pm5.21ndd 379 | 1
⊢ (𝜑 → (𝐾 ∈ Smgrp ↔ 𝐿 ∈ Smgrp)) |