| Step | Hyp | Ref
| Expression |
| 1 | | simpll 767 |
. . . 4
⊢ (((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → 𝑀 ∈ Smgrp) |
| 2 | | cntzsgrpcl.c |
. . . . . 6
⊢ 𝐶 = (𝑍‘𝑆) |
| 3 | | cntzsgrpcl.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑀) |
| 4 | | cntzsgrpcl.z |
. . . . . . 7
⊢ 𝑍 = (Cntz‘𝑀) |
| 5 | 3, 4 | cntzssv 19346 |
. . . . . 6
⊢ (𝑍‘𝑆) ⊆ 𝐵 |
| 6 | 2, 5 | eqsstri 4030 |
. . . . 5
⊢ 𝐶 ⊆ 𝐵 |
| 7 | | simprl 771 |
. . . . 5
⊢ (((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → 𝑦 ∈ 𝐶) |
| 8 | 6, 7 | sselid 3981 |
. . . 4
⊢ (((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → 𝑦 ∈ 𝐵) |
| 9 | | simprr 773 |
. . . . 5
⊢ (((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → 𝑧 ∈ 𝐶) |
| 10 | 6, 9 | sselid 3981 |
. . . 4
⊢ (((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → 𝑧 ∈ 𝐵) |
| 11 | | eqid 2737 |
. . . . 5
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 12 | 3, 11 | sgrpcl 18739 |
. . . 4
⊢ ((𝑀 ∈ Smgrp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑀)𝑧) ∈ 𝐵) |
| 13 | 1, 8, 10, 12 | syl3anc 1373 |
. . 3
⊢ (((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (𝑦(+g‘𝑀)𝑧) ∈ 𝐵) |
| 14 | 1 | adantr 480 |
. . . . . 6
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → 𝑀 ∈ Smgrp) |
| 15 | 8 | adantr 480 |
. . . . . 6
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
| 16 | 10 | adantr 480 |
. . . . . 6
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → 𝑧 ∈ 𝐵) |
| 17 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ 𝐵) |
| 18 | 17 | sselda 3983 |
. . . . . . 7
⊢ (((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
| 19 | 18 | adantlr 715 |
. . . . . 6
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
| 20 | 3, 11 | sgrpass 18738 |
. . . . . 6
⊢ ((𝑀 ∈ Smgrp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑦(+g‘𝑀)(𝑧(+g‘𝑀)𝑥))) |
| 21 | 14, 15, 16, 19, 20 | syl13anc 1374 |
. . . . 5
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑦(+g‘𝑀)(𝑧(+g‘𝑀)𝑥))) |
| 22 | 2 | eleq2i 2833 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ (𝑍‘𝑆)) |
| 23 | 11, 4 | cntzi 19347 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (𝑍‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑧(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑧)) |
| 24 | 22, 23 | sylanb 581 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝑆) → (𝑧(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑧)) |
| 25 | 9, 24 | sylan 580 |
. . . . . . 7
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → (𝑧(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑧)) |
| 26 | 25 | oveq2d 7447 |
. . . . . 6
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → (𝑦(+g‘𝑀)(𝑧(+g‘𝑀)𝑥)) = (𝑦(+g‘𝑀)(𝑥(+g‘𝑀)𝑧))) |
| 27 | 3, 11 | sgrpass 18738 |
. . . . . . 7
⊢ ((𝑀 ∈ Smgrp ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝑀)𝑥)(+g‘𝑀)𝑧) = (𝑦(+g‘𝑀)(𝑥(+g‘𝑀)𝑧))) |
| 28 | 14, 15, 19, 16, 27 | syl13anc 1374 |
. . . . . 6
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → ((𝑦(+g‘𝑀)𝑥)(+g‘𝑀)𝑧) = (𝑦(+g‘𝑀)(𝑥(+g‘𝑀)𝑧))) |
| 29 | 2 | eleq2i 2833 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ (𝑍‘𝑆)) |
| 30 | 11, 4 | cntzi 19347 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (𝑍‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
| 31 | 29, 30 | sylanb 581 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑥 ∈ 𝑆) → (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
| 32 | 7, 31 | sylan 580 |
. . . . . . 7
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
| 33 | 32 | oveq1d 7446 |
. . . . . 6
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → ((𝑦(+g‘𝑀)𝑥)(+g‘𝑀)𝑧) = ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧)) |
| 34 | 26, 28, 33 | 3eqtr2d 2783 |
. . . . 5
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → (𝑦(+g‘𝑀)(𝑧(+g‘𝑀)𝑥)) = ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧)) |
| 35 | 3, 11 | sgrpass 18738 |
. . . . . 6
⊢ ((𝑀 ∈ Smgrp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) |
| 36 | 14, 19, 15, 16, 35 | syl13anc 1374 |
. . . . 5
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) |
| 37 | 21, 34, 36 | 3eqtrd 2781 |
. . . 4
⊢ ((((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) ∧ 𝑥 ∈ 𝑆) → ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) |
| 38 | 37 | ralrimiva 3146 |
. . 3
⊢ (((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ∀𝑥 ∈ 𝑆 ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) |
| 39 | 2 | eleq2i 2833 |
. . . . 5
⊢ ((𝑦(+g‘𝑀)𝑧) ∈ 𝐶 ↔ (𝑦(+g‘𝑀)𝑧) ∈ (𝑍‘𝑆)) |
| 40 | 3, 11, 4 | elcntz 19340 |
. . . . 5
⊢ (𝑆 ⊆ 𝐵 → ((𝑦(+g‘𝑀)𝑧) ∈ (𝑍‘𝑆) ↔ ((𝑦(+g‘𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))))) |
| 41 | 39, 40 | bitrid 283 |
. . . 4
⊢ (𝑆 ⊆ 𝐵 → ((𝑦(+g‘𝑀)𝑧) ∈ 𝐶 ↔ ((𝑦(+g‘𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))))) |
| 42 | 41 | ad2antlr 727 |
. . 3
⊢ (((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ((𝑦(+g‘𝑀)𝑧) ∈ 𝐶 ↔ ((𝑦(+g‘𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))))) |
| 43 | 13, 38, 42 | mpbir2and 713 |
. 2
⊢ (((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (𝑦(+g‘𝑀)𝑧) ∈ 𝐶) |
| 44 | 43 | ralrimivva 3202 |
1
⊢ ((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) → ∀𝑦 ∈ 𝐶 ∀𝑧 ∈ 𝐶 (𝑦(+g‘𝑀)𝑧) ∈ 𝐶) |