MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsgrpcl Structured version   Visualization version   GIF version

Theorem cntzsgrpcl 19374
Description: Centralizers are closed under the semigroup operation. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
cntzsgrpcl.b 𝐵 = (Base‘𝑀)
cntzsgrpcl.z 𝑍 = (Cntz‘𝑀)
cntzsgrpcl.c 𝐶 = (𝑍𝑆)
Assertion
Ref Expression
cntzsgrpcl ((𝑀 ∈ Smgrp ∧ 𝑆𝐵) → ∀𝑦𝐶𝑧𝐶 (𝑦(+g𝑀)𝑧) ∈ 𝐶)
Distinct variable groups:   𝑦,𝐵,𝑧   𝑦,𝐶,𝑧   𝑦,𝑀,𝑧   𝑦,𝑆,𝑧   𝑦,𝑍,𝑧

Proof of Theorem cntzsgrpcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → 𝑀 ∈ Smgrp)
2 cntzsgrpcl.c . . . . . 6 𝐶 = (𝑍𝑆)
3 cntzsgrpcl.b . . . . . . 7 𝐵 = (Base‘𝑀)
4 cntzsgrpcl.z . . . . . . 7 𝑍 = (Cntz‘𝑀)
53, 4cntzssv 19368 . . . . . 6 (𝑍𝑆) ⊆ 𝐵
62, 5eqsstri 4043 . . . . 5 𝐶𝐵
7 simprl 770 . . . . 5 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → 𝑦𝐶)
86, 7sselid 4006 . . . 4 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → 𝑦𝐵)
9 simprr 772 . . . . 5 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧𝐶)
106, 9sselid 4006 . . . 4 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧𝐵)
11 eqid 2740 . . . . 5 (+g𝑀) = (+g𝑀)
123, 11sgrpcl 18764 . . . 4 ((𝑀 ∈ Smgrp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑀)𝑧) ∈ 𝐵)
131, 8, 10, 12syl3anc 1371 . . 3 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → (𝑦(+g𝑀)𝑧) ∈ 𝐵)
141adantr 480 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → 𝑀 ∈ Smgrp)
158adantr 480 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → 𝑦𝐵)
1610adantr 480 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → 𝑧𝐵)
17 simpr 484 . . . . . . . 8 ((𝑀 ∈ Smgrp ∧ 𝑆𝐵) → 𝑆𝐵)
1817sselda 4008 . . . . . . 7 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝐵)
1918adantlr 714 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → 𝑥𝐵)
203, 11sgrpass 18763 . . . . . 6 ((𝑀 ∈ Smgrp ∧ (𝑦𝐵𝑧𝐵𝑥𝐵)) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)))
2114, 15, 16, 19, 20syl13anc 1372 . . . . 5 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)))
222eleq2i 2836 . . . . . . . . 9 (𝑧𝐶𝑧 ∈ (𝑍𝑆))
2311, 4cntzi 19369 . . . . . . . . 9 ((𝑧 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝑧(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑧))
2422, 23sylanb 580 . . . . . . . 8 ((𝑧𝐶𝑥𝑆) → (𝑧(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑧))
259, 24sylan 579 . . . . . . 7 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → (𝑧(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑧))
2625oveq2d 7464 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
273, 11sgrpass 18763 . . . . . . 7 ((𝑀 ∈ Smgrp ∧ (𝑦𝐵𝑥𝐵𝑧𝐵)) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
2814, 15, 19, 16, 27syl13anc 1372 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
292eleq2i 2836 . . . . . . . . 9 (𝑦𝐶𝑦 ∈ (𝑍𝑆))
3011, 4cntzi 19369 . . . . . . . . 9 ((𝑦 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
3129, 30sylanb 580 . . . . . . . 8 ((𝑦𝐶𝑥𝑆) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
327, 31sylan 579 . . . . . . 7 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
3332oveq1d 7463 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧))
3426, 28, 333eqtr2d 2786 . . . . 5 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)) = ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧))
353, 11sgrpass 18763 . . . . . 6 ((𝑀 ∈ Smgrp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
3614, 19, 15, 16, 35syl13anc 1372 . . . . 5 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
3721, 34, 363eqtrd 2784 . . . 4 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
3837ralrimiva 3152 . . 3 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
392eleq2i 2836 . . . . 5 ((𝑦(+g𝑀)𝑧) ∈ 𝐶 ↔ (𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))
403, 11, 4elcntz 19362 . . . . 5 (𝑆𝐵 → ((𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆) ↔ ((𝑦(+g𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))))
4139, 40bitrid 283 . . . 4 (𝑆𝐵 → ((𝑦(+g𝑀)𝑧) ∈ 𝐶 ↔ ((𝑦(+g𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))))
4241ad2antlr 726 . . 3 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → ((𝑦(+g𝑀)𝑧) ∈ 𝐶 ↔ ((𝑦(+g𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))))
4313, 38, 42mpbir2and 712 . 2 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → (𝑦(+g𝑀)𝑧) ∈ 𝐶)
4443ralrimivva 3208 1 ((𝑀 ∈ Smgrp ∧ 𝑆𝐵) → ∀𝑦𝐶𝑧𝐶 (𝑦(+g𝑀)𝑧) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Smgrpcsgrp 18756  Cntzccntz 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-mgm 18678  df-sgrp 18757  df-cntz 19357
This theorem is referenced by:  cntzsubrng  20593
  Copyright terms: Public domain W3C validator