MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsgrpcl Structured version   Visualization version   GIF version

Theorem cntzsgrpcl 19273
Description: Centralizers are closed under the semigroup operation. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
cntzsgrpcl.b 𝐵 = (Base‘𝑀)
cntzsgrpcl.z 𝑍 = (Cntz‘𝑀)
cntzsgrpcl.c 𝐶 = (𝑍𝑆)
Assertion
Ref Expression
cntzsgrpcl ((𝑀 ∈ Smgrp ∧ 𝑆𝐵) → ∀𝑦𝐶𝑧𝐶 (𝑦(+g𝑀)𝑧) ∈ 𝐶)
Distinct variable groups:   𝑦,𝐵,𝑧   𝑦,𝐶,𝑧   𝑦,𝑀,𝑧   𝑦,𝑆,𝑧   𝑦,𝑍,𝑧

Proof of Theorem cntzsgrpcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → 𝑀 ∈ Smgrp)
2 cntzsgrpcl.c . . . . . 6 𝐶 = (𝑍𝑆)
3 cntzsgrpcl.b . . . . . . 7 𝐵 = (Base‘𝑀)
4 cntzsgrpcl.z . . . . . . 7 𝑍 = (Cntz‘𝑀)
53, 4cntzssv 19267 . . . . . 6 (𝑍𝑆) ⊆ 𝐵
62, 5eqsstri 3996 . . . . 5 𝐶𝐵
7 simprl 770 . . . . 5 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → 𝑦𝐶)
86, 7sselid 3947 . . . 4 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → 𝑦𝐵)
9 simprr 772 . . . . 5 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧𝐶)
106, 9sselid 3947 . . . 4 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧𝐵)
11 eqid 2730 . . . . 5 (+g𝑀) = (+g𝑀)
123, 11sgrpcl 18660 . . . 4 ((𝑀 ∈ Smgrp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑀)𝑧) ∈ 𝐵)
131, 8, 10, 12syl3anc 1373 . . 3 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → (𝑦(+g𝑀)𝑧) ∈ 𝐵)
141adantr 480 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → 𝑀 ∈ Smgrp)
158adantr 480 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → 𝑦𝐵)
1610adantr 480 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → 𝑧𝐵)
17 simpr 484 . . . . . . . 8 ((𝑀 ∈ Smgrp ∧ 𝑆𝐵) → 𝑆𝐵)
1817sselda 3949 . . . . . . 7 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝐵)
1918adantlr 715 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → 𝑥𝐵)
203, 11sgrpass 18659 . . . . . 6 ((𝑀 ∈ Smgrp ∧ (𝑦𝐵𝑧𝐵𝑥𝐵)) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)))
2114, 15, 16, 19, 20syl13anc 1374 . . . . 5 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)))
222eleq2i 2821 . . . . . . . . 9 (𝑧𝐶𝑧 ∈ (𝑍𝑆))
2311, 4cntzi 19268 . . . . . . . . 9 ((𝑧 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝑧(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑧))
2422, 23sylanb 581 . . . . . . . 8 ((𝑧𝐶𝑥𝑆) → (𝑧(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑧))
259, 24sylan 580 . . . . . . 7 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → (𝑧(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑧))
2625oveq2d 7406 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
273, 11sgrpass 18659 . . . . . . 7 ((𝑀 ∈ Smgrp ∧ (𝑦𝐵𝑥𝐵𝑧𝐵)) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
2814, 15, 19, 16, 27syl13anc 1374 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
292eleq2i 2821 . . . . . . . . 9 (𝑦𝐶𝑦 ∈ (𝑍𝑆))
3011, 4cntzi 19268 . . . . . . . . 9 ((𝑦 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
3129, 30sylanb 581 . . . . . . . 8 ((𝑦𝐶𝑥𝑆) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
327, 31sylan 580 . . . . . . 7 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
3332oveq1d 7405 . . . . . 6 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧))
3426, 28, 333eqtr2d 2771 . . . . 5 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)) = ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧))
353, 11sgrpass 18659 . . . . . 6 ((𝑀 ∈ Smgrp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
3614, 19, 15, 16, 35syl13anc 1374 . . . . 5 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
3721, 34, 363eqtrd 2769 . . . 4 ((((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
3837ralrimiva 3126 . . 3 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
392eleq2i 2821 . . . . 5 ((𝑦(+g𝑀)𝑧) ∈ 𝐶 ↔ (𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))
403, 11, 4elcntz 19261 . . . . 5 (𝑆𝐵 → ((𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆) ↔ ((𝑦(+g𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))))
4139, 40bitrid 283 . . . 4 (𝑆𝐵 → ((𝑦(+g𝑀)𝑧) ∈ 𝐶 ↔ ((𝑦(+g𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))))
4241ad2antlr 727 . . 3 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → ((𝑦(+g𝑀)𝑧) ∈ 𝐶 ↔ ((𝑦(+g𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))))
4313, 38, 42mpbir2and 713 . 2 (((𝑀 ∈ Smgrp ∧ 𝑆𝐵) ∧ (𝑦𝐶𝑧𝐶)) → (𝑦(+g𝑀)𝑧) ∈ 𝐶)
4443ralrimivva 3181 1 ((𝑀 ∈ Smgrp ∧ 𝑆𝐵) → ∀𝑦𝐶𝑧𝐶 (𝑦(+g𝑀)𝑧) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Smgrpcsgrp 18652  Cntzccntz 19254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-mgm 18574  df-sgrp 18653  df-cntz 19256
This theorem is referenced by:  cntzsubrng  20483
  Copyright terms: Public domain W3C validator