Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml3N Structured version   Visualization version   GIF version

Theorem cdleml3N 36955
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdleml3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
cdleml3N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Distinct variable groups:   𝐸,𝑠   𝐾,𝑠   𝑅,𝑠   𝑇,𝑠   𝑈,𝑠   𝑉,𝑠   𝑊,𝑠,𝑓,𝑔   𝐵,𝑔,𝑠   𝑓,𝐸   𝑓,𝑔,𝐻,𝑠   𝑓,𝐾,𝑔   0 ,𝑓,𝑠   𝑇,𝑓,𝑔   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊,𝑔
Allowed substitution hints:   𝐵(𝑓)   𝑅(𝑓,𝑔)   𝑈(𝑔)   𝐸(𝑔)   𝑉(𝑔)   0 (𝑔)

Proof of Theorem cdleml3N
StepHypRef Expression
1 simp1 1166 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2 1167 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (𝑈𝐸𝑉𝐸𝑓𝑇))
3 simp31 1266 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑓 ≠ ( I ↾ 𝐵))
4 simp32 1267 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑈0 )
5 simp21 1263 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑈𝐸)
6 simp23 1265 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑓𝑇)
7 cdleml1.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 cdleml1.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
9 cdleml1.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdleml1.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
11 cdleml3.o . . . . . . 7 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
127, 8, 9, 10, 11tendoid0 36802 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝑓𝑇𝑓 ≠ ( I ↾ 𝐵))) → ((𝑈𝑓) = ( I ↾ 𝐵) ↔ 𝑈 = 0 ))
131, 5, 6, 3, 12syl112anc 1493 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ((𝑈𝑓) = ( I ↾ 𝐵) ↔ 𝑈 = 0 ))
1413necon3bid 2981 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ((𝑈𝑓) ≠ ( I ↾ 𝐵) ↔ 𝑈0 ))
154, 14mpbird 248 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (𝑈𝑓) ≠ ( I ↾ 𝐵))
16 simp33 1268 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑉0 )
17 simp22 1264 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑉𝐸)
187, 8, 9, 10, 11tendoid0 36802 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸 ∧ (𝑓𝑇𝑓 ≠ ( I ↾ 𝐵))) → ((𝑉𝑓) = ( I ↾ 𝐵) ↔ 𝑉 = 0 ))
191, 17, 6, 3, 18syl112anc 1493 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ((𝑉𝑓) = ( I ↾ 𝐵) ↔ 𝑉 = 0 ))
2019necon3bid 2981 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ((𝑉𝑓) ≠ ( I ↾ 𝐵) ↔ 𝑉0 ))
2116, 20mpbird 248 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (𝑉𝑓) ≠ ( I ↾ 𝐵))
22 cdleml1.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
237, 8, 9, 22, 10cdleml2N 36954 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → ∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓))
241, 2, 3, 15, 21, 23syl113anc 1501 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓))
25 simpl1 1242 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simpr 477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → 𝑠𝐸)
27 simpl21 1335 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → 𝑈𝐸)
28 simpl23 1339 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → 𝑓𝑇)
298, 9, 10tendocoval 36743 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑈𝐸) ∧ 𝑓𝑇) → ((𝑠𝑈)‘𝑓) = (𝑠‘(𝑈𝑓)))
3025, 26, 27, 28, 29syl121anc 1494 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → ((𝑠𝑈)‘𝑓) = (𝑠‘(𝑈𝑓)))
3130eqeq1d 2767 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → (((𝑠𝑈)‘𝑓) = (𝑉𝑓) ↔ (𝑠‘(𝑈𝑓)) = (𝑉𝑓)))
32 simp11 1260 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 simp2 1167 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑠𝐸)
34 simp121 1404 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑈𝐸)
358, 10tendococl 36749 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑈𝐸) → (𝑠𝑈) ∈ 𝐸)
3632, 33, 34, 35syl3anc 1490 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → (𝑠𝑈) ∈ 𝐸)
37 simp122 1405 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑉𝐸)
38 simp3 1168 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → ((𝑠𝑈)‘𝑓) = (𝑉𝑓))
39 simp123 1406 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑓𝑇)
40 simp131 1407 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑓 ≠ ( I ↾ 𝐵))
417, 8, 9, 10tendocan 36801 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑈) ∈ 𝐸𝑉𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) ∧ (𝑓𝑇𝑓 ≠ ( I ↾ 𝐵))) → (𝑠𝑈) = 𝑉)
4232, 36, 37, 38, 39, 40, 41syl132anc 1507 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → (𝑠𝑈) = 𝑉)
43423expia 1150 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → (((𝑠𝑈)‘𝑓) = (𝑉𝑓) → (𝑠𝑈) = 𝑉))
4431, 43sylbird 251 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → ((𝑠‘(𝑈𝑓)) = (𝑉𝑓) → (𝑠𝑈) = 𝑉))
4544reximdva 3163 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉))
4624, 45mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056  cmpt 4890   I cid 5186  cres 5281  ccom 5283  cfv 6070  Basecbs 16144  HLchlt 35327  LHypclh 35961  LTrncltrn 36078  trLctrl 36135  TEndoctendo 36729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-riotaBAD 34930
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-1st 7370  df-2nd 7371  df-undef 7606  df-map 8066  df-proset 17208  df-poset 17226  df-plt 17238  df-lub 17254  df-glb 17255  df-join 17256  df-meet 17257  df-p0 17319  df-p1 17320  df-lat 17326  df-clat 17388  df-oposet 35153  df-ol 35155  df-oml 35156  df-covers 35243  df-ats 35244  df-atl 35275  df-cvlat 35299  df-hlat 35328  df-llines 35475  df-lplanes 35476  df-lvols 35477  df-lines 35478  df-psubsp 35480  df-pmap 35481  df-padd 35773  df-lhyp 35965  df-laut 35966  df-ldil 36081  df-ltrn 36082  df-trl 36136  df-tendo 36732
This theorem is referenced by:  cdleml4N  36956
  Copyright terms: Public domain W3C validator