Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml3N Structured version   Visualization version   GIF version

Theorem cdleml3N 40957
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdleml3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
cdleml3N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Distinct variable groups:   𝐸,𝑠   𝐾,𝑠   𝑅,𝑠   𝑇,𝑠   𝑈,𝑠   𝑉,𝑠   𝑊,𝑠,𝑓,𝑔   𝐵,𝑔,𝑠   𝑓,𝐸   𝑓,𝑔,𝐻,𝑠   𝑓,𝐾,𝑔   0 ,𝑓,𝑠   𝑇,𝑓,𝑔   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊,𝑔
Allowed substitution hints:   𝐵(𝑓)   𝑅(𝑓,𝑔)   𝑈(𝑔)   𝐸(𝑔)   𝑉(𝑔)   0 (𝑔)

Proof of Theorem cdleml3N
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2 1137 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (𝑈𝐸𝑉𝐸𝑓𝑇))
3 simp31 1210 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑓 ≠ ( I ↾ 𝐵))
4 simp32 1211 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑈0 )
5 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑈𝐸)
6 simp23 1209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑓𝑇)
7 cdleml1.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 cdleml1.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
9 cdleml1.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdleml1.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
11 cdleml3.o . . . . . . 7 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
127, 8, 9, 10, 11tendoid0 40804 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝑓𝑇𝑓 ≠ ( I ↾ 𝐵))) → ((𝑈𝑓) = ( I ↾ 𝐵) ↔ 𝑈 = 0 ))
131, 5, 6, 3, 12syl112anc 1376 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ((𝑈𝑓) = ( I ↾ 𝐵) ↔ 𝑈 = 0 ))
1413necon3bid 2969 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ((𝑈𝑓) ≠ ( I ↾ 𝐵) ↔ 𝑈0 ))
154, 14mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (𝑈𝑓) ≠ ( I ↾ 𝐵))
16 simp33 1212 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑉0 )
17 simp22 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → 𝑉𝐸)
187, 8, 9, 10, 11tendoid0 40804 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸 ∧ (𝑓𝑇𝑓 ≠ ( I ↾ 𝐵))) → ((𝑉𝑓) = ( I ↾ 𝐵) ↔ 𝑉 = 0 ))
191, 17, 6, 3, 18syl112anc 1376 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ((𝑉𝑓) = ( I ↾ 𝐵) ↔ 𝑉 = 0 ))
2019necon3bid 2969 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ((𝑉𝑓) ≠ ( I ↾ 𝐵) ↔ 𝑉0 ))
2116, 20mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (𝑉𝑓) ≠ ( I ↾ 𝐵))
22 cdleml1.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
237, 8, 9, 22, 10cdleml2N 40956 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → ∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓))
241, 2, 3, 15, 21, 23syl113anc 1384 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓))
25 simpl1 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → 𝑠𝐸)
27 simpl21 1252 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → 𝑈𝐸)
28 simpl23 1254 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → 𝑓𝑇)
298, 9, 10tendocoval 40745 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑈𝐸) ∧ 𝑓𝑇) → ((𝑠𝑈)‘𝑓) = (𝑠‘(𝑈𝑓)))
3025, 26, 27, 28, 29syl121anc 1377 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → ((𝑠𝑈)‘𝑓) = (𝑠‘(𝑈𝑓)))
3130eqeq1d 2731 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → (((𝑠𝑈)‘𝑓) = (𝑉𝑓) ↔ (𝑠‘(𝑈𝑓)) = (𝑉𝑓)))
32 simp11 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑠𝐸)
34 simp121 1306 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑈𝐸)
358, 10tendococl 40751 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑈𝐸) → (𝑠𝑈) ∈ 𝐸)
3632, 33, 34, 35syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → (𝑠𝑈) ∈ 𝐸)
37 simp122 1307 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑉𝐸)
38 simp3 1138 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → ((𝑠𝑈)‘𝑓) = (𝑉𝑓))
39 simp123 1308 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑓𝑇)
40 simp131 1309 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → 𝑓 ≠ ( I ↾ 𝐵))
417, 8, 9, 10tendocan 40803 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑈) ∈ 𝐸𝑉𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) ∧ (𝑓𝑇𝑓 ≠ ( I ↾ 𝐵))) → (𝑠𝑈) = 𝑉)
4232, 36, 37, 38, 39, 40, 41syl132anc 1390 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸 ∧ ((𝑠𝑈)‘𝑓) = (𝑉𝑓)) → (𝑠𝑈) = 𝑉)
43423expia 1121 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → (((𝑠𝑈)‘𝑓) = (𝑉𝑓) → (𝑠𝑈) = 𝑉))
4431, 43sylbird 260 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) ∧ 𝑠𝐸) → ((𝑠‘(𝑈𝑓)) = (𝑉𝑓) → (𝑠𝑈) = 𝑉))
4544reximdva 3142 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → (∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉))
4624, 45mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cmpt 5176   I cid 5517  cres 5625  ccom 5627  cfv 6486  Basecbs 17138  HLchlt 39328  LHypclh 39963  LTrncltrn 40080  trLctrl 40137  TEndoctendo 40731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-undef 8213  df-map 8762  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tendo 40734
This theorem is referenced by:  cdleml4N  40958
  Copyright terms: Public domain W3C validator