| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp123 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp123 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp23 1209 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28930 axpasch 28940 exatleN 39576 ps-2b 39654 3atlem1 39655 3atlem2 39656 3atlem4 39658 3atlem5 39659 3atlem6 39660 2llnjaN 39738 2llnjN 39739 4atlem12b 39783 2lplnja 39791 2lplnj 39792 dalemrea 39800 dath2 39909 lneq2at 39950 osumcllem7N 40134 cdleme26ee 40532 cdlemg35 40885 cdlemg36 40886 cdlemj1 40993 cdlemk23-3 41074 cdlemk25-3 41076 cdlemk26b-3 41077 cdlemk27-3 41079 cdlemk28-3 41080 cdleml3N 41150 iscnrm3llem2 49111 |
| Copyright terms: Public domain | W3C validator |