![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp123 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp123 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp23 1222 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
2 | 1 | 3ad2ant1 1124 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1073 |
This theorem is referenced by: ax5seglem3 26280 axpasch 26290 exatleN 35552 ps-2b 35630 3atlem1 35631 3atlem2 35632 3atlem4 35634 3atlem5 35635 3atlem6 35636 2llnjaN 35714 2llnjN 35715 4atlem12b 35759 2lplnja 35767 2lplnj 35768 dalemrea 35776 dath2 35885 lneq2at 35926 osumcllem7N 36110 cdleme26ee 36508 cdlemg35 36861 cdlemg36 36862 cdlemj1 36969 cdlemk23-3 37050 cdlemk25-3 37052 cdlemk26b-3 37053 cdlemk27-3 37055 cdlemk28-3 37056 cdleml3N 37126 |
Copyright terms: Public domain | W3C validator |