| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp123 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp123 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp23 1209 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28865 axpasch 28875 exatleN 39405 ps-2b 39483 3atlem1 39484 3atlem2 39485 3atlem4 39487 3atlem5 39488 3atlem6 39489 2llnjaN 39567 2llnjN 39568 4atlem12b 39612 2lplnja 39620 2lplnj 39621 dalemrea 39629 dath2 39738 lneq2at 39779 osumcllem7N 39963 cdleme26ee 40361 cdlemg35 40714 cdlemg36 40715 cdlemj1 40822 cdlemk23-3 40903 cdlemk25-3 40905 cdlemk26b-3 40906 cdlemk27-3 40908 cdlemk28-3 40909 cdleml3N 40979 iscnrm3llem2 48942 |
| Copyright terms: Public domain | W3C validator |