MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp123 Structured version   Visualization version   GIF version

Theorem simp123 1308
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp123 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜒)

Proof of Theorem simp123
StepHypRef Expression
1 simp23 1209 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜒)
213ad2ant1 1133 1 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ax5seglem3  28910  axpasch  28920  exatleN  39423  ps-2b  39501  3atlem1  39502  3atlem2  39503  3atlem4  39505  3atlem5  39506  3atlem6  39507  2llnjaN  39585  2llnjN  39586  4atlem12b  39630  2lplnja  39638  2lplnj  39639  dalemrea  39647  dath2  39756  lneq2at  39797  osumcllem7N  39981  cdleme26ee  40379  cdlemg35  40732  cdlemg36  40733  cdlemj1  40840  cdlemk23-3  40921  cdlemk25-3  40923  cdlemk26b-3  40924  cdlemk27-3  40926  cdlemk28-3  40927  cdleml3N  40997  iscnrm3llem2  48924
  Copyright terms: Public domain W3C validator