Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp123 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp123 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp23 1207 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: ax5seglem3 27299 axpasch 27309 exatleN 37418 ps-2b 37496 3atlem1 37497 3atlem2 37498 3atlem4 37500 3atlem5 37501 3atlem6 37502 2llnjaN 37580 2llnjN 37581 4atlem12b 37625 2lplnja 37633 2lplnj 37634 dalemrea 37642 dath2 37751 lneq2at 37792 osumcllem7N 37976 cdleme26ee 38374 cdlemg35 38727 cdlemg36 38728 cdlemj1 38835 cdlemk23-3 38916 cdlemk25-3 38918 cdlemk26b-3 38919 cdlemk27-3 38921 cdlemk28-3 38922 cdleml3N 38992 iscnrm3llem2 46244 |
Copyright terms: Public domain | W3C validator |