| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp123 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp123 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp23 1209 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28910 axpasch 28920 exatleN 39423 ps-2b 39501 3atlem1 39502 3atlem2 39503 3atlem4 39505 3atlem5 39506 3atlem6 39507 2llnjaN 39585 2llnjN 39586 4atlem12b 39630 2lplnja 39638 2lplnj 39639 dalemrea 39647 dath2 39756 lneq2at 39797 osumcllem7N 39981 cdleme26ee 40379 cdlemg35 40732 cdlemg36 40733 cdlemj1 40840 cdlemk23-3 40921 cdlemk25-3 40923 cdlemk26b-3 40924 cdlemk27-3 40926 cdlemk28-3 40927 cdleml3N 40997 iscnrm3llem2 48924 |
| Copyright terms: Public domain | W3C validator |