MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp123 Structured version   Visualization version   GIF version

Theorem simp123 1308
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp123 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜒)

Proof of Theorem simp123
StepHypRef Expression
1 simp23 1209 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜒)
213ad2ant1 1133 1 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ax5seglem3  28910  axpasch  28920  exatleN  39449  ps-2b  39527  3atlem1  39528  3atlem2  39529  3atlem4  39531  3atlem5  39532  3atlem6  39533  2llnjaN  39611  2llnjN  39612  4atlem12b  39656  2lplnja  39664  2lplnj  39665  dalemrea  39673  dath2  39782  lneq2at  39823  osumcllem7N  40007  cdleme26ee  40405  cdlemg35  40758  cdlemg36  40759  cdlemj1  40866  cdlemk23-3  40947  cdlemk25-3  40949  cdlemk26b-3  40950  cdlemk27-3  40952  cdlemk28-3  40953  cdleml3N  41023  iscnrm3llem2  48987
  Copyright terms: Public domain W3C validator