Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp123 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp123 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp23 1206 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ax5seglem3 27202 axpasch 27212 exatleN 37345 ps-2b 37423 3atlem1 37424 3atlem2 37425 3atlem4 37427 3atlem5 37428 3atlem6 37429 2llnjaN 37507 2llnjN 37508 4atlem12b 37552 2lplnja 37560 2lplnj 37561 dalemrea 37569 dath2 37678 lneq2at 37719 osumcllem7N 37903 cdleme26ee 38301 cdlemg35 38654 cdlemg36 38655 cdlemj1 38762 cdlemk23-3 38843 cdlemk25-3 38845 cdlemk26b-3 38846 cdlemk27-3 38848 cdlemk28-3 38849 cdleml3N 38919 iscnrm3llem2 46132 |
Copyright terms: Public domain | W3C validator |