MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp123 Structured version   Visualization version   GIF version

Theorem simp123 1307
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp123 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜒)

Proof of Theorem simp123
StepHypRef Expression
1 simp23 1208 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜒)
213ad2ant1 1133 1 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  ax5seglem3  28964  axpasch  28974  exatleN  39361  ps-2b  39439  3atlem1  39440  3atlem2  39441  3atlem4  39443  3atlem5  39444  3atlem6  39445  2llnjaN  39523  2llnjN  39524  4atlem12b  39568  2lplnja  39576  2lplnj  39577  dalemrea  39585  dath2  39694  lneq2at  39735  osumcllem7N  39919  cdleme26ee  40317  cdlemg35  40670  cdlemg36  40671  cdlemj1  40778  cdlemk23-3  40859  cdlemk25-3  40861  cdlemk26b-3  40862  cdlemk27-3  40864  cdlemk28-3  40865  cdleml3N  40935  iscnrm3llem2  48630
  Copyright terms: Public domain W3C validator