MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp123 Structured version   Visualization version   GIF version

Theorem simp123 1308
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp123 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜒)

Proof of Theorem simp123
StepHypRef Expression
1 simp23 1209 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜒)
213ad2ant1 1133 1 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ax5seglem3  28894  axpasch  28904  exatleN  39386  ps-2b  39464  3atlem1  39465  3atlem2  39466  3atlem4  39468  3atlem5  39469  3atlem6  39470  2llnjaN  39548  2llnjN  39549  4atlem12b  39593  2lplnja  39601  2lplnj  39602  dalemrea  39610  dath2  39719  lneq2at  39760  osumcllem7N  39944  cdleme26ee  40342  cdlemg35  40695  cdlemg36  40696  cdlemj1  40803  cdlemk23-3  40884  cdlemk25-3  40886  cdlemk26b-3  40887  cdlemk27-3  40889  cdlemk28-3  40890  cdleml3N  40960  iscnrm3llem2  48938
  Copyright terms: Public domain W3C validator