![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp123 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp123 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp23 1208 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: ax5seglem3 28964 axpasch 28974 exatleN 39361 ps-2b 39439 3atlem1 39440 3atlem2 39441 3atlem4 39443 3atlem5 39444 3atlem6 39445 2llnjaN 39523 2llnjN 39524 4atlem12b 39568 2lplnja 39576 2lplnj 39577 dalemrea 39585 dath2 39694 lneq2at 39735 osumcllem7N 39919 cdleme26ee 40317 cdlemg35 40670 cdlemg36 40671 cdlemj1 40778 cdlemk23-3 40859 cdlemk25-3 40861 cdlemk26b-3 40862 cdlemk27-3 40864 cdlemk28-3 40865 cdleml3N 40935 iscnrm3llem2 48630 |
Copyright terms: Public domain | W3C validator |