| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp123 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp123 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp23 1209 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28894 axpasch 28904 exatleN 39386 ps-2b 39464 3atlem1 39465 3atlem2 39466 3atlem4 39468 3atlem5 39469 3atlem6 39470 2llnjaN 39548 2llnjN 39549 4atlem12b 39593 2lplnja 39601 2lplnj 39602 dalemrea 39610 dath2 39719 lneq2at 39760 osumcllem7N 39944 cdleme26ee 40342 cdlemg35 40695 cdlemg36 40696 cdlemj1 40803 cdlemk23-3 40884 cdlemk25-3 40886 cdlemk26b-3 40887 cdlemk27-3 40889 cdlemk28-3 40890 cdleml3N 40960 iscnrm3llem2 48938 |
| Copyright terms: Public domain | W3C validator |