| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp123 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp123 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp23 1209 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28858 axpasch 28868 exatleN 39398 ps-2b 39476 3atlem1 39477 3atlem2 39478 3atlem4 39480 3atlem5 39481 3atlem6 39482 2llnjaN 39560 2llnjN 39561 4atlem12b 39605 2lplnja 39613 2lplnj 39614 dalemrea 39622 dath2 39731 lneq2at 39772 osumcllem7N 39956 cdleme26ee 40354 cdlemg35 40707 cdlemg36 40708 cdlemj1 40815 cdlemk23-3 40896 cdlemk25-3 40898 cdlemk26b-3 40899 cdlemk27-3 40901 cdlemk28-3 40902 cdleml3N 40972 iscnrm3llem2 48938 |
| Copyright terms: Public domain | W3C validator |