Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdacl | Structured version Visualization version GIF version |
Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdacl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmdacl.k | ⊢ 𝐾 = (Base‘𝐹) |
slmdacl.p | ⊢ + = (+g‘𝐹) |
Ref | Expression |
---|---|
slmdacl | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdacl.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | slmdsrg 31362 | . . 3 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
3 | srgmnd 19660 | . . 3 ⊢ (𝐹 ∈ SRing → 𝐹 ∈ Mnd) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ Mnd) |
5 | slmdacl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
6 | slmdacl.p | . . 3 ⊢ + = (+g‘𝐹) | |
7 | 5, 6 | mndcl 18308 | . 2 ⊢ ((𝐹 ∈ Mnd ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
8 | 4, 7 | syl3an1 1161 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 Mndcmnd 18300 SRingcsrg 19656 SLModcslmd 31355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-cmn 19303 df-srg 19657 df-slmd 31356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |