Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdacl Structured version   Visualization version   GIF version

Theorem slmdacl 32341
Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdacl.f 𝐹 = (Scalarβ€˜π‘Š)
slmdacl.k 𝐾 = (Baseβ€˜πΉ)
slmdacl.p + = (+gβ€˜πΉ)
Assertion
Ref Expression
slmdacl ((π‘Š ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐾) β†’ (𝑋 + π‘Œ) ∈ 𝐾)

Proof of Theorem slmdacl
StepHypRef Expression
1 slmdacl.f . . . 4 𝐹 = (Scalarβ€˜π‘Š)
21slmdsrg 32339 . . 3 (π‘Š ∈ SLMod β†’ 𝐹 ∈ SRing)
3 srgmnd 20006 . . 3 (𝐹 ∈ SRing β†’ 𝐹 ∈ Mnd)
42, 3syl 17 . 2 (π‘Š ∈ SLMod β†’ 𝐹 ∈ Mnd)
5 slmdacl.k . . 3 𝐾 = (Baseβ€˜πΉ)
6 slmdacl.p . . 3 + = (+gβ€˜πΉ)
75, 6mndcl 18629 . 2 ((𝐹 ∈ Mnd ∧ 𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐾) β†’ (𝑋 + π‘Œ) ∈ 𝐾)
84, 7syl3an1 1163 1 ((π‘Š ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐾) β†’ (𝑋 + π‘Œ) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  Scalarcsca 17196  Mndcmnd 18621  SRingcsrg 20002  SLModcslmd 32332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-ov 7408  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-cmn 19644  df-srg 20003  df-slmd 32333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator