Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdacl Structured version   Visualization version   GIF version

Theorem slmdacl 33198
Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdacl.f 𝐹 = (Scalar‘𝑊)
slmdacl.k 𝐾 = (Base‘𝐹)
slmdacl.p + = (+g𝐹)
Assertion
Ref Expression
slmdacl ((𝑊 ∈ SLMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)

Proof of Theorem slmdacl
StepHypRef Expression
1 slmdacl.f . . . 4 𝐹 = (Scalar‘𝑊)
21slmdsrg 33196 . . 3 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
3 srgmnd 20208 . . 3 (𝐹 ∈ SRing → 𝐹 ∈ Mnd)
42, 3syl 17 . 2 (𝑊 ∈ SLMod → 𝐹 ∈ Mnd)
5 slmdacl.k . . 3 𝐾 = (Base‘𝐹)
6 slmdacl.p . . 3 + = (+g𝐹)
75, 6mndcl 18768 . 2 ((𝐹 ∈ Mnd ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
84, 7syl3an1 1162 1 ((𝑊 ∈ SLMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301  Mndcmnd 18760  SRingcsrg 20204  SLModcslmd 33189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-cmn 19815  df-srg 20205  df-slmd 33190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator