![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdacl | Structured version Visualization version GIF version |
Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdacl.f | β’ πΉ = (Scalarβπ) |
slmdacl.k | β’ πΎ = (BaseβπΉ) |
slmdacl.p | β’ + = (+gβπΉ) |
Ref | Expression |
---|---|
slmdacl | β’ ((π β SLMod β§ π β πΎ β§ π β πΎ) β (π + π) β πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdacl.f | . . . 4 β’ πΉ = (Scalarβπ) | |
2 | 1 | slmdsrg 32339 | . . 3 β’ (π β SLMod β πΉ β SRing) |
3 | srgmnd 20006 | . . 3 β’ (πΉ β SRing β πΉ β Mnd) | |
4 | 2, 3 | syl 17 | . 2 β’ (π β SLMod β πΉ β Mnd) |
5 | slmdacl.k | . . 3 β’ πΎ = (BaseβπΉ) | |
6 | slmdacl.p | . . 3 β’ + = (+gβπΉ) | |
7 | 5, 6 | mndcl 18629 | . 2 β’ ((πΉ β Mnd β§ π β πΎ β§ π β πΎ) β (π + π) β πΎ) |
8 | 4, 7 | syl3an1 1163 | 1 β’ ((π β SLMod β§ π β πΎ β§ π β πΎ) β (π + π) β πΎ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βcfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 Scalarcsca 17196 Mndcmnd 18621 SRingcsrg 20002 SLModcslmd 32332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-ov 7408 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-cmn 19644 df-srg 20003 df-slmd 32333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |