Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdacl Structured version   Visualization version   GIF version

Theorem slmdacl 31462
Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdacl.f 𝐹 = (Scalar‘𝑊)
slmdacl.k 𝐾 = (Base‘𝐹)
slmdacl.p + = (+g𝐹)
Assertion
Ref Expression
slmdacl ((𝑊 ∈ SLMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)

Proof of Theorem slmdacl
StepHypRef Expression
1 slmdacl.f . . . 4 𝐹 = (Scalar‘𝑊)
21slmdsrg 31460 . . 3 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
3 srgmnd 19745 . . 3 (𝐹 ∈ SRing → 𝐹 ∈ Mnd)
42, 3syl 17 . 2 (𝑊 ∈ SLMod → 𝐹 ∈ Mnd)
5 slmdacl.k . . 3 𝐾 = (Base‘𝐹)
6 slmdacl.p . . 3 + = (+g𝐹)
75, 6mndcl 18393 . 2 ((𝐹 ∈ Mnd ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
84, 7syl3an1 1162 1 ((𝑊 ∈ SLMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965  Mndcmnd 18385  SRingcsrg 19741  SLModcslmd 31453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-cmn 19388  df-srg 19742  df-slmd 31454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator