Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdacl Structured version   Visualization version   GIF version

Theorem slmdacl 33169
Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdacl.f 𝐹 = (Scalar‘𝑊)
slmdacl.k 𝐾 = (Base‘𝐹)
slmdacl.p + = (+g𝐹)
Assertion
Ref Expression
slmdacl ((𝑊 ∈ SLMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)

Proof of Theorem slmdacl
StepHypRef Expression
1 slmdacl.f . . . 4 𝐹 = (Scalar‘𝑊)
21slmdsrg 33167 . . 3 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
3 srgmnd 20106 . . 3 (𝐹 ∈ SRing → 𝐹 ∈ Mnd)
42, 3syl 17 . 2 (𝑊 ∈ SLMod → 𝐹 ∈ Mnd)
5 slmdacl.k . . 3 𝐾 = (Base‘𝐹)
6 slmdacl.p . . 3 + = (+g𝐹)
75, 6mndcl 18676 . 2 ((𝐹 ∈ Mnd ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
84, 7syl3an1 1163 1 ((𝑊 ∈ SLMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230  Mndcmnd 18668  SRingcsrg 20102  SLModcslmd 33160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-cmn 19719  df-srg 20103  df-slmd 33161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator