![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdsrg | Structured version Visualization version GIF version |
Description: The scalar component of a semimodule is a semiring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdsrg.1 | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
slmdsrg | β’ (π β SLMod β πΉ β SRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2732 | . . 3 β’ (+gβπ) = (+gβπ) | |
3 | eqid 2732 | . . 3 β’ ( Β·π βπ) = ( Β·π βπ) | |
4 | eqid 2732 | . . 3 β’ (0gβπ) = (0gβπ) | |
5 | slmdsrg.1 | . . 3 β’ πΉ = (Scalarβπ) | |
6 | eqid 2732 | . . 3 β’ (BaseβπΉ) = (BaseβπΉ) | |
7 | eqid 2732 | . . 3 β’ (+gβπΉ) = (+gβπΉ) | |
8 | eqid 2732 | . . 3 β’ (.rβπΉ) = (.rβπΉ) | |
9 | eqid 2732 | . . 3 β’ (1rβπΉ) = (1rβπΉ) | |
10 | eqid 2732 | . . 3 β’ (0gβπΉ) = (0gβπΉ) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | isslmd 32605 | . 2 β’ (π β SLMod β (π β CMnd β§ πΉ β SRing β§ βπ€ β (BaseβπΉ)βπ§ β (BaseβπΉ)βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)(((π§( Β·π βπ)π¦) β (Baseβπ) β§ (π§( Β·π βπ)(π¦(+gβπ)π₯)) = ((π§( Β·π βπ)π¦)(+gβπ)(π§( Β·π βπ)π₯)) β§ ((π€(+gβπΉ)π§)( Β·π βπ)π¦) = ((π€( Β·π βπ)π¦)(+gβπ)(π§( Β·π βπ)π¦))) β§ (((π€(.rβπΉ)π§)( Β·π βπ)π¦) = (π€( Β·π βπ)(π§( Β·π βπ)π¦)) β§ ((1rβπΉ)( Β·π βπ)π¦) = π¦ β§ ((0gβπΉ)( Β·π βπ)π¦) = (0gβπ))))) |
12 | 11 | simp2bi 1146 | 1 β’ (π β SLMod β πΉ β SRing) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 βcfv 6543 (class class class)co 7411 Basecbs 17148 +gcplusg 17201 .rcmulr 17202 Scalarcsca 17204 Β·π cvsca 17205 0gc0g 17389 CMndccmn 19689 1rcur 20075 SRingcsrg 20080 SLModcslmd 32603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7414 df-slmd 32604 |
This theorem is referenced by: slmdacl 32612 slmdmcl 32613 slmdsn0 32614 slmd0cl 32621 slmd1cl 32622 slmdvs0 32628 gsumvsca2 32630 |
Copyright terms: Public domain | W3C validator |