Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdsrg Structured version   Visualization version   GIF version

Theorem slmdsrg 31133
Description: The scalar component of a semimodule is a semiring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypothesis
Ref Expression
slmdsrg.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
slmdsrg (𝑊 ∈ SLMod → 𝐹 ∈ SRing)

Proof of Theorem slmdsrg
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2736 . . 3 (+g𝑊) = (+g𝑊)
3 eqid 2736 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 eqid 2736 . . 3 (0g𝑊) = (0g𝑊)
5 slmdsrg.1 . . 3 𝐹 = (Scalar‘𝑊)
6 eqid 2736 . . 3 (Base‘𝐹) = (Base‘𝐹)
7 eqid 2736 . . 3 (+g𝐹) = (+g𝐹)
8 eqid 2736 . . 3 (.r𝐹) = (.r𝐹)
9 eqid 2736 . . 3 (1r𝐹) = (1r𝐹)
10 eqid 2736 . . 3 (0g𝐹) = (0g𝐹)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10isslmd 31128 . 2 (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ 𝐹 ∈ SRing ∧ ∀𝑤 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝑧( ·𝑠𝑊)(𝑦(+g𝑊)𝑥)) = ((𝑧( ·𝑠𝑊)𝑦)(+g𝑊)(𝑧( ·𝑠𝑊)𝑥)) ∧ ((𝑤(+g𝐹)𝑧)( ·𝑠𝑊)𝑦) = ((𝑤( ·𝑠𝑊)𝑦)(+g𝑊)(𝑧( ·𝑠𝑊)𝑦))) ∧ (((𝑤(.r𝐹)𝑧)( ·𝑠𝑊)𝑦) = (𝑤( ·𝑠𝑊)(𝑧( ·𝑠𝑊)𝑦)) ∧ ((1r𝐹)( ·𝑠𝑊)𝑦) = 𝑦 ∧ ((0g𝐹)( ·𝑠𝑊)𝑦) = (0g𝑊)))))
1211simp2bi 1148 1 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  cfv 6358  (class class class)co 7191  Basecbs 16666  +gcplusg 16749  .rcmulr 16750  Scalarcsca 16752   ·𝑠 cvsca 16753  0gc0g 16898  CMndccmn 19124  1rcur 19470  SRingcsrg 19474  SLModcslmd 31126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-nul 5184
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-iota 6316  df-fv 6366  df-ov 7194  df-slmd 31127
This theorem is referenced by:  slmdacl  31135  slmdmcl  31136  slmdsn0  31137  slmd0cl  31144  slmd1cl  31145  slmdvs0  31151  gsumvsca2  31153
  Copyright terms: Public domain W3C validator