| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdsrg | Structured version Visualization version GIF version | ||
| Description: The scalar component of a semimodule is a semiring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| slmdsrg.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| slmdsrg | ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2730 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2730 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2730 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 5 | slmdsrg.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | eqid 2730 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 7 | eqid 2730 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 8 | eqid 2730 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 9 | eqid 2730 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 10 | eqid 2730 | . . 3 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | isslmd 33162 | . 2 ⊢ (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ 𝐹 ∈ SRing ∧ ∀𝑤 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝑧( ·𝑠 ‘𝑊)(𝑦(+g‘𝑊)𝑥)) = ((𝑧( ·𝑠 ‘𝑊)𝑦)(+g‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑤(+g‘𝐹)𝑧)( ·𝑠 ‘𝑊)𝑦) = ((𝑤( ·𝑠 ‘𝑊)𝑦)(+g‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦))) ∧ (((𝑤(.r‘𝐹)𝑧)( ·𝑠 ‘𝑊)𝑦) = (𝑤( ·𝑠 ‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑦) = 𝑦 ∧ ((0g‘𝐹)( ·𝑠 ‘𝑊)𝑦) = (0g‘𝑊))))) |
| 12 | 11 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 CMndccmn 19717 1rcur 20097 SRingcsrg 20102 SLModcslmd 33160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-slmd 33161 |
| This theorem is referenced by: slmdacl 33169 slmdmcl 33170 slmdsn0 33171 slmd0cl 33178 slmd1cl 33179 slmdvs0 33185 gsumvsca2 33187 |
| Copyright terms: Public domain | W3C validator |