Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdsrg Structured version   Visualization version   GIF version

Theorem slmdsrg 33186
Description: The scalar component of a semimodule is a semiring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypothesis
Ref Expression
slmdsrg.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
slmdsrg (𝑊 ∈ SLMod → 𝐹 ∈ SRing)

Proof of Theorem slmdsrg
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2740 . . 3 (+g𝑊) = (+g𝑊)
3 eqid 2740 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 eqid 2740 . . 3 (0g𝑊) = (0g𝑊)
5 slmdsrg.1 . . 3 𝐹 = (Scalar‘𝑊)
6 eqid 2740 . . 3 (Base‘𝐹) = (Base‘𝐹)
7 eqid 2740 . . 3 (+g𝐹) = (+g𝐹)
8 eqid 2740 . . 3 (.r𝐹) = (.r𝐹)
9 eqid 2740 . . 3 (1r𝐹) = (1r𝐹)
10 eqid 2740 . . 3 (0g𝐹) = (0g𝐹)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10isslmd 33181 . 2 (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ 𝐹 ∈ SRing ∧ ∀𝑤 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝑧( ·𝑠𝑊)(𝑦(+g𝑊)𝑥)) = ((𝑧( ·𝑠𝑊)𝑦)(+g𝑊)(𝑧( ·𝑠𝑊)𝑥)) ∧ ((𝑤(+g𝐹)𝑧)( ·𝑠𝑊)𝑦) = ((𝑤( ·𝑠𝑊)𝑦)(+g𝑊)(𝑧( ·𝑠𝑊)𝑦))) ∧ (((𝑤(.r𝐹)𝑧)( ·𝑠𝑊)𝑦) = (𝑤( ·𝑠𝑊)(𝑧( ·𝑠𝑊)𝑦)) ∧ ((1r𝐹)( ·𝑠𝑊)𝑦) = 𝑦 ∧ ((0g𝐹)( ·𝑠𝑊)𝑦) = (0g𝑊)))))
1211simp2bi 1146 1 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  CMndccmn 19822  1rcur 20208  SRingcsrg 20213  SLModcslmd 33179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-slmd 33180
This theorem is referenced by:  slmdacl  33188  slmdmcl  33189  slmdsn0  33190  slmd0cl  33197  slmd1cl  33198  slmdvs0  33204  gsumvsca2  33206
  Copyright terms: Public domain W3C validator