![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdsrg | Structured version Visualization version GIF version |
Description: The scalar component of a semimodule is a semiring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdsrg.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
slmdsrg | ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2795 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2795 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2795 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | eqid 2795 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | slmdsrg.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | eqid 2795 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
7 | eqid 2795 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
8 | eqid 2795 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
9 | eqid 2795 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
10 | eqid 2795 | . . 3 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | isslmd 30473 | . 2 ⊢ (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ 𝐹 ∈ SRing ∧ ∀𝑤 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝑧( ·𝑠 ‘𝑊)(𝑦(+g‘𝑊)𝑥)) = ((𝑧( ·𝑠 ‘𝑊)𝑦)(+g‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑤(+g‘𝐹)𝑧)( ·𝑠 ‘𝑊)𝑦) = ((𝑤( ·𝑠 ‘𝑊)𝑦)(+g‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦))) ∧ (((𝑤(.r‘𝐹)𝑧)( ·𝑠 ‘𝑊)𝑦) = (𝑤( ·𝑠 ‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑦) = 𝑦 ∧ ((0g‘𝐹)( ·𝑠 ‘𝑊)𝑦) = (0g‘𝑊))))) |
12 | 11 | simp2bi 1139 | 1 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ∀wral 3105 ‘cfv 6230 (class class class)co 7021 Basecbs 16317 +gcplusg 16399 .rcmulr 16400 Scalarcsca 16402 ·𝑠 cvsca 16403 0gc0g 16547 CMndccmn 18638 1rcur 18946 SRingcsrg 18950 SLModcslmd 30471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 ax-nul 5106 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3710 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-sn 4477 df-pr 4479 df-op 4483 df-uni 4750 df-br 4967 df-iota 6194 df-fv 6238 df-ov 7024 df-slmd 30472 |
This theorem is referenced by: slmdacl 30480 slmdmcl 30481 slmdsn0 30482 slmd0cl 30489 slmd1cl 30490 slmdvs0 30496 gsumvsca2 30503 |
Copyright terms: Public domain | W3C validator |