![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdsrg | Structured version Visualization version GIF version |
Description: The scalar component of a semimodule is a semiring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdsrg.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
slmdsrg | ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2735 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2735 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | eqid 2735 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | slmdsrg.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | eqid 2735 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
7 | eqid 2735 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
8 | eqid 2735 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
9 | eqid 2735 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
10 | eqid 2735 | . . 3 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | isslmd 33191 | . 2 ⊢ (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ 𝐹 ∈ SRing ∧ ∀𝑤 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝑧( ·𝑠 ‘𝑊)(𝑦(+g‘𝑊)𝑥)) = ((𝑧( ·𝑠 ‘𝑊)𝑦)(+g‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑤(+g‘𝐹)𝑧)( ·𝑠 ‘𝑊)𝑦) = ((𝑤( ·𝑠 ‘𝑊)𝑦)(+g‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦))) ∧ (((𝑤(.r‘𝐹)𝑧)( ·𝑠 ‘𝑊)𝑦) = (𝑤( ·𝑠 ‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑦) = 𝑦 ∧ ((0g‘𝐹)( ·𝑠 ‘𝑊)𝑦) = (0g‘𝑊))))) |
12 | 11 | simp2bi 1145 | 1 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 0gc0g 17486 CMndccmn 19813 1rcur 20199 SRingcsrg 20204 SLModcslmd 33189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-slmd 33190 |
This theorem is referenced by: slmdacl 33198 slmdmcl 33199 slmdsn0 33200 slmd0cl 33207 slmd1cl 33208 slmdvs0 33214 gsumvsca2 33216 |
Copyright terms: Public domain | W3C validator |