Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdbn0 Structured version   Visualization version   GIF version

Theorem slmdbn0 33161
Description: The base set of a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.)
Hypothesis
Ref Expression
slmdbn0.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
slmdbn0 (𝑊 ∈ SLMod → 𝐵 ≠ ∅)

Proof of Theorem slmdbn0
StepHypRef Expression
1 slmdmnd 33159 . 2 (𝑊 ∈ SLMod → 𝑊 ∈ Mnd)
2 slmdbn0.b . . 3 𝐵 = (Base‘𝑊)
32mndbn0 18677 . 2 (𝑊 ∈ Mnd → 𝐵 ≠ ∅)
41, 3syl 17 1 (𝑊 ∈ SLMod → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  c0 4296  cfv 6511  Basecbs 17179  Mndcmnd 18661  SLModcslmd 33153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-riota 7344  df-ov 7390  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-cmn 19712  df-slmd 33154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator