Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdbn0 Structured version   Visualization version   GIF version

Theorem slmdbn0 31461
Description: The base set of a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.)
Hypothesis
Ref Expression
slmdbn0.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
slmdbn0 (𝑊 ∈ SLMod → 𝐵 ≠ ∅)

Proof of Theorem slmdbn0
StepHypRef Expression
1 slmdmnd 31459 . 2 (𝑊 ∈ SLMod → 𝑊 ∈ Mnd)
2 slmdbn0.b . . 3 𝐵 = (Base‘𝑊)
32mndbn0 18401 . 2 (𝑊 ∈ Mnd → 𝐵 ≠ ∅)
41, 3syl 17 1 (𝑊 ∈ SLMod → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  c0 4256  cfv 6433  Basecbs 16912  Mndcmnd 18385  SLModcslmd 31453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-riota 7232  df-ov 7278  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-cmn 19388  df-slmd 31454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator