![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgmnd | Structured version Visualization version GIF version |
Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
Ref | Expression |
---|---|
srgmnd | ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgcmn 18862 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
2 | cmnmnd 18561 | . 2 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 Mndcmnd 17647 CMndccmn 18546 SRingcsrg 18859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-nul 5013 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-iota 6086 df-fv 6131 df-ov 6908 df-cmn 18548 df-srg 18860 |
This theorem is referenced by: srg0cl 18873 srgacl 18878 srg1zr 18883 srgmulgass 18885 srgpcomppsc 18888 srglmhm 18889 srgrmhm 18890 srgsummulcr 18891 sgsummulcl 18892 srgbinomlem2 18895 srgbinomlem3 18896 srgbinomlem4 18897 srgbinomlem 18898 srgbinom 18899 slmdacl 30307 slmdsn0 30309 |
Copyright terms: Public domain | W3C validator |