![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgmnd | Structured version Visualization version GIF version |
Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
Ref | Expression |
---|---|
srgmnd | ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgcmn 20216 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
2 | cmnmnd 19839 | . 2 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Mndcmnd 18772 CMndccmn 19822 SRingcsrg 20213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-cmn 19824 df-srg 20214 |
This theorem is referenced by: srg0cl 20227 srgacl 20232 srgcom4 20241 srg1zr 20242 srgmulgass 20244 srgpcomppsc 20247 srglmhm 20248 srgrmhm 20249 srgsummulcr 20250 sgsummulcl 20251 srgbinomlem2 20254 srgbinomlem3 20255 srgbinomlem4 20256 srgbinomlem 20257 srgbinom 20258 slmdacl 33188 slmdsn0 33190 |
Copyright terms: Public domain | W3C validator |