| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgmnd | Structured version Visualization version GIF version | ||
| Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| srgmnd | ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcmn 20092 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
| 2 | cmnmnd 19694 | . 2 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mndcmnd 18626 CMndccmn 19677 SRingcsrg 20089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-cmn 19679 df-srg 20090 |
| This theorem is referenced by: srg0cl 20103 srgacl 20108 srgcom4 20117 srg1zr 20118 srgmulgass 20120 srgpcomppsc 20123 srglmhm 20124 srgrmhm 20125 srgsummulcr 20126 sgsummulcl 20127 srgbinomlem2 20130 srgbinomlem3 20131 srgbinomlem4 20132 srgbinomlem 20133 srgbinom 20134 slmdacl 33164 slmdsn0 33166 |
| Copyright terms: Public domain | W3C validator |