Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srgmnd | Structured version Visualization version GIF version |
Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
Ref | Expression |
---|---|
srgmnd | ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgcmn 19659 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
2 | cmnmnd 19317 | . 2 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Mndcmnd 18300 CMndccmn 19301 SRingcsrg 19656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-cmn 19303 df-srg 19657 |
This theorem is referenced by: srg0cl 19670 srgacl 19675 srg1zr 19680 srgmulgass 19682 srgpcomppsc 19685 srglmhm 19686 srgrmhm 19687 srgsummulcr 19688 sgsummulcl 19689 srgbinomlem2 19692 srgbinomlem3 19693 srgbinomlem4 19694 srgbinomlem 19695 srgbinom 19696 slmdacl 31364 slmdsn0 31366 |
Copyright terms: Public domain | W3C validator |