| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgmnd | Structured version Visualization version GIF version | ||
| Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| srgmnd | ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcmn 20098 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
| 2 | cmnmnd 19727 | . 2 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mndcmnd 18661 CMndccmn 19710 SRingcsrg 20095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-cmn 19712 df-srg 20096 |
| This theorem is referenced by: srg0cl 20109 srgacl 20114 srgcom4 20123 srg1zr 20124 srgmulgass 20126 srgpcomppsc 20129 srglmhm 20130 srgrmhm 20131 srgsummulcr 20132 sgsummulcl 20133 srgbinomlem2 20136 srgbinomlem3 20137 srgbinomlem4 20138 srgbinomlem 20139 srgbinom 20140 slmdacl 33162 slmdsn0 33164 |
| Copyright terms: Public domain | W3C validator |