MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgmnd Structured version   Visualization version   GIF version

Theorem srgmnd 20106
Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Assertion
Ref Expression
srgmnd (𝑅 ∈ SRing → 𝑅 ∈ Mnd)

Proof of Theorem srgmnd
StepHypRef Expression
1 srgcmn 20105 . 2 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
2 cmnmnd 19734 . 2 (𝑅 ∈ CMnd → 𝑅 ∈ Mnd)
31, 2syl 17 1 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Mndcmnd 18668  CMndccmn 19717  SRingcsrg 20102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-cmn 19719  df-srg 20103
This theorem is referenced by:  srg0cl  20116  srgacl  20121  srgcom4  20130  srg1zr  20131  srgmulgass  20133  srgpcomppsc  20136  srglmhm  20137  srgrmhm  20138  srgsummulcr  20139  sgsummulcl  20140  srgbinomlem2  20143  srgbinomlem3  20144  srgbinomlem4  20145  srgbinomlem  20146  srgbinom  20147  slmdacl  33169  slmdsn0  33171
  Copyright terms: Public domain W3C validator