| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgmnd | Structured version Visualization version GIF version | ||
| Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| srgmnd | ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcmn 20149 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
| 2 | cmnmnd 19778 | . 2 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Mndcmnd 18712 CMndccmn 19761 SRingcsrg 20146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-cmn 19763 df-srg 20147 |
| This theorem is referenced by: srg0cl 20160 srgacl 20165 srgcom4 20174 srg1zr 20175 srgmulgass 20177 srgpcomppsc 20180 srglmhm 20181 srgrmhm 20182 srgsummulcr 20183 sgsummulcl 20184 srgbinomlem2 20187 srgbinomlem3 20188 srgbinomlem4 20189 srgbinomlem 20190 srgbinom 20191 slmdacl 33206 slmdsn0 33208 |
| Copyright terms: Public domain | W3C validator |