MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgmnd Structured version   Visualization version   GIF version

Theorem srgmnd 19745
Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Assertion
Ref Expression
srgmnd (𝑅 ∈ SRing → 𝑅 ∈ Mnd)

Proof of Theorem srgmnd
StepHypRef Expression
1 srgcmn 19744 . 2 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
2 cmnmnd 19402 . 2 (𝑅 ∈ CMnd → 𝑅 ∈ Mnd)
31, 2syl 17 1 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Mndcmnd 18385  CMndccmn 19386  SRingcsrg 19741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-cmn 19388  df-srg 19742
This theorem is referenced by:  srg0cl  19755  srgacl  19760  srg1zr  19765  srgmulgass  19767  srgpcomppsc  19770  srglmhm  19771  srgrmhm  19772  srgsummulcr  19773  sgsummulcl  19774  srgbinomlem2  19777  srgbinomlem3  19778  srgbinomlem4  19779  srgbinomlem  19780  srgbinom  19781  slmdacl  31462  slmdsn0  31464
  Copyright terms: Public domain W3C validator