| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgmnd | Structured version Visualization version GIF version | ||
| Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| srgmnd | ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcmn 20102 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
| 2 | cmnmnd 19704 | . 2 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Mndcmnd 18637 CMndccmn 19687 SRingcsrg 20099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-cmn 19689 df-srg 20100 |
| This theorem is referenced by: srg0cl 20113 srgacl 20118 srgcom4 20127 srg1zr 20128 srgmulgass 20130 srgpcomppsc 20133 srglmhm 20134 srgrmhm 20135 srgsummulcr 20136 sgsummulcl 20137 srgbinomlem2 20140 srgbinomlem3 20141 srgbinomlem4 20142 srgbinomlem 20143 srgbinom 20144 slmdacl 33170 slmdsn0 33172 |
| Copyright terms: Public domain | W3C validator |