| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgmnd | Structured version Visualization version GIF version | ||
| Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| srgmnd | ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcmn 20105 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
| 2 | cmnmnd 19734 | . 2 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mndcmnd 18668 CMndccmn 19717 SRingcsrg 20102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-cmn 19719 df-srg 20103 |
| This theorem is referenced by: srg0cl 20116 srgacl 20121 srgcom4 20130 srg1zr 20131 srgmulgass 20133 srgpcomppsc 20136 srglmhm 20137 srgrmhm 20138 srgsummulcr 20139 sgsummulcl 20140 srgbinomlem2 20143 srgbinomlem3 20144 srgbinomlem4 20145 srgbinomlem 20146 srgbinom 20147 slmdacl 33169 slmdsn0 33171 |
| Copyright terms: Public domain | W3C validator |