Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srgmnd | Structured version Visualization version GIF version |
Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
Ref | Expression |
---|---|
srgmnd | ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgcmn 19744 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
2 | cmnmnd 19402 | . 2 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Mndcmnd 18385 CMndccmn 19386 SRingcsrg 19741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-cmn 19388 df-srg 19742 |
This theorem is referenced by: srg0cl 19755 srgacl 19760 srg1zr 19765 srgmulgass 19767 srgpcomppsc 19770 srglmhm 19771 srgrmhm 19772 srgsummulcr 19773 sgsummulcl 19774 srgbinomlem2 19777 srgbinomlem3 19778 srgbinomlem4 19779 srgbinomlem 19780 srgbinom 19781 slmdacl 31462 slmdsn0 31464 |
Copyright terms: Public domain | W3C validator |