MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgmnd Structured version   Visualization version   GIF version

Theorem srgmnd 20150
Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Assertion
Ref Expression
srgmnd (𝑅 ∈ SRing → 𝑅 ∈ Mnd)

Proof of Theorem srgmnd
StepHypRef Expression
1 srgcmn 20149 . 2 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
2 cmnmnd 19778 . 2 (𝑅 ∈ CMnd → 𝑅 ∈ Mnd)
31, 2syl 17 1 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Mndcmnd 18712  CMndccmn 19761  SRingcsrg 20146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-cmn 19763  df-srg 20147
This theorem is referenced by:  srg0cl  20160  srgacl  20165  srgcom4  20174  srg1zr  20175  srgmulgass  20177  srgpcomppsc  20180  srglmhm  20181  srgrmhm  20182  srgsummulcr  20183  sgsummulcl  20184  srgbinomlem2  20187  srgbinomlem3  20188  srgbinomlem4  20189  srgbinomlem  20190  srgbinom  20191  slmdacl  33206  slmdsn0  33208
  Copyright terms: Public domain W3C validator