Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdass Structured version   Visualization version   GIF version

Theorem slmdass 32941
Description: Semiring left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvacl.v 𝑉 = (Base‘𝑊)
slmdvacl.a + = (+g𝑊)
Assertion
Ref Expression
slmdass ((𝑊 ∈ SLMod ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem slmdass
StepHypRef Expression
1 slmdmnd 32934 . 2 (𝑊 ∈ SLMod → 𝑊 ∈ Mnd)
2 slmdvacl.v . . 3 𝑉 = (Base‘𝑊)
3 slmdvacl.a . . 3 + = (+g𝑊)
42, 3mndass 18710 . 2 ((𝑊 ∈ Mnd ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
51, 4sylan 578 1 ((𝑊 ∈ SLMod ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cfv 6553  (class class class)co 7426  Basecbs 17187  +gcplusg 17240  Mndcmnd 18701  SLModcslmd 32928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-nul 5310
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-ov 7429  df-sgrp 18686  df-mnd 18702  df-cmn 19744  df-slmd 32929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator