Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdass | Structured version Visualization version GIF version |
Description: Semiring left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
slmdvacl.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
slmdass | ⊢ ((𝑊 ∈ SLMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdmnd 31459 | . 2 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) | |
2 | slmdvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | slmdvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | 2, 3 | mndass 18394 | . 2 ⊢ ((𝑊 ∈ Mnd ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
5 | 1, 4 | sylan 580 | 1 ⊢ ((𝑊 ∈ SLMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Mndcmnd 18385 SLModcslmd 31453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-sgrp 18375 df-mnd 18386 df-cmn 19388 df-slmd 31454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |