Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvacl Structured version   Visualization version   GIF version

Theorem slmdvacl 31451
Description: Closure of vector addition for a semiring left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvacl.v 𝑉 = (Base‘𝑊)
slmdvacl.a + = (+g𝑊)
Assertion
Ref Expression
slmdvacl ((𝑊 ∈ SLMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)

Proof of Theorem slmdvacl
StepHypRef Expression
1 slmdmnd 31445 . 2 (𝑊 ∈ SLMod → 𝑊 ∈ Mnd)
2 slmdvacl.v . . 3 𝑉 = (Base‘𝑊)
3 slmdvacl.a . . 3 + = (+g𝑊)
42, 3mndcl 18381 . 2 ((𝑊 ∈ Mnd ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
51, 4syl3an1 1162 1 ((𝑊 ∈ SLMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cfv 6427  (class class class)co 7268  Basecbs 16900  +gcplusg 16950  Mndcmnd 18373  SLModcslmd 31439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5229
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-iota 6385  df-fv 6435  df-ov 7271  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-cmn 19376  df-slmd 31440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator