Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvacl Structured version   Visualization version   GIF version

Theorem slmdvacl 32628
Description: Closure of vector addition for a semiring left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvacl.v 𝑉 = (Base‘𝑊)
slmdvacl.a + = (+g𝑊)
Assertion
Ref Expression
slmdvacl ((𝑊 ∈ SLMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)

Proof of Theorem slmdvacl
StepHypRef Expression
1 slmdmnd 32622 . 2 (𝑊 ∈ SLMod → 𝑊 ∈ Mnd)
2 slmdvacl.v . . 3 𝑉 = (Base‘𝑊)
3 slmdvacl.a . . 3 + = (+g𝑊)
42, 3mndcl 18668 . 2 ((𝑊 ∈ Mnd ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
51, 4syl3an1 1162 1 ((𝑊 ∈ SLMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  cfv 6543  (class class class)co 7412  Basecbs 17149  +gcplusg 17202  Mndcmnd 18660  SLModcslmd 32616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-cmn 19692  df-slmd 32617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator