![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdmnd | Structured version Visualization version GIF version |
Description: A semimodule is a monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdmnd | ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdcmn 30303 | . 2 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) | |
2 | cmnmnd 18561 | . 2 ⊢ (𝑊 ∈ CMnd → 𝑊 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 Mndcmnd 17647 CMndccmn 18546 SLModcslmd 30298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-nul 5013 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-iota 6086 df-fv 6131 df-ov 6908 df-cmn 18548 df-slmd 30299 |
This theorem is referenced by: slmdbn0 30306 slmdvacl 30310 slmdass 30311 slmd0vcl 30319 slmd0vlid 30320 slmd0vrid 30321 |
Copyright terms: Public domain | W3C validator |