Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdmnd | Structured version Visualization version GIF version |
Description: A semimodule is a monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdmnd | ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdcmn 31658 | . 2 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) | |
2 | cmnmnd 19489 | . 2 ⊢ (𝑊 ∈ CMnd → 𝑊 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Mndcmnd 18474 CMndccmn 19473 SLModcslmd 31653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5247 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 df-cmn 19475 df-slmd 31654 |
This theorem is referenced by: slmdbn0 31661 slmdvacl 31665 slmdass 31666 slmd0vcl 31674 slmd0vlid 31675 slmd0vrid 31676 |
Copyright terms: Public domain | W3C validator |