| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdmnd | Structured version Visualization version GIF version | ||
| Description: A semimodule is a monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| slmdmnd | ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slmdcmn 33156 | . 2 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) | |
| 2 | cmnmnd 19676 | . 2 ⊢ (𝑊 ∈ CMnd → 𝑊 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mndcmnd 18608 CMndccmn 19659 SLModcslmd 33151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-cmn 19661 df-slmd 33152 |
| This theorem is referenced by: slmdbn0 33159 slmdvacl 33163 slmdass 33164 slmd0vcl 33172 slmd0vlid 33173 slmd0vrid 33174 |
| Copyright terms: Public domain | W3C validator |