Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdmnd Structured version   Visualization version   GIF version

Theorem slmdmnd 30304
Description: A semimodule is a monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
slmdmnd (𝑊 ∈ SLMod → 𝑊 ∈ Mnd)

Proof of Theorem slmdmnd
StepHypRef Expression
1 slmdcmn 30303 . 2 (𝑊 ∈ SLMod → 𝑊 ∈ CMnd)
2 cmnmnd 18561 . 2 (𝑊 ∈ CMnd → 𝑊 ∈ Mnd)
31, 2syl 17 1 (𝑊 ∈ SLMod → 𝑊 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2166  Mndcmnd 17647  CMndccmn 18546  SLModcslmd 30298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-nul 5013
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-iota 6086  df-fv 6131  df-ov 6908  df-cmn 18548  df-slmd 30299
This theorem is referenced by:  slmdbn0  30306  slmdvacl  30310  slmdass  30311  slmd0vcl  30319  slmd0vlid  30320  slmd0vrid  30321
  Copyright terms: Public domain W3C validator