Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdcmn Structured version   Visualization version   GIF version

Theorem slmdcmn 30883
Description: A semimodule is a commutative monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
slmdcmn (𝑊 ∈ SLMod → 𝑊 ∈ CMnd)

Proof of Theorem slmdcmn
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2798 . . 3 (+g𝑊) = (+g𝑊)
3 eqid 2798 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 eqid 2798 . . 3 (0g𝑊) = (0g𝑊)
5 eqid 2798 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2798 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
7 eqid 2798 . . 3 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
8 eqid 2798 . . 3 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
9 eqid 2798 . . 3 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
10 eqid 2798 . . 3 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10isslmd 30880 . 2 (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ (Scalar‘𝑊) ∈ SRing ∧ ∀𝑤 ∈ (Base‘(Scalar‘𝑊))∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝑧( ·𝑠𝑊)(𝑦(+g𝑊)𝑥)) = ((𝑧( ·𝑠𝑊)𝑦)(+g𝑊)(𝑧( ·𝑠𝑊)𝑥)) ∧ ((𝑤(+g‘(Scalar‘𝑊))𝑧)( ·𝑠𝑊)𝑦) = ((𝑤( ·𝑠𝑊)𝑦)(+g𝑊)(𝑧( ·𝑠𝑊)𝑦))) ∧ (((𝑤(.r‘(Scalar‘𝑊))𝑧)( ·𝑠𝑊)𝑦) = (𝑤( ·𝑠𝑊)(𝑧( ·𝑠𝑊)𝑦)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑦) = 𝑦 ∧ ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑦) = (0g𝑊)))))
1211simp1bi 1142 1 (𝑊 ∈ SLMod → 𝑊 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  CMndccmn 18898  1rcur 19244  SRingcsrg 19248  SLModcslmd 30878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138  df-slmd 30879
This theorem is referenced by:  slmdmnd  30884  gsumvsca1  30904  gsumvsca2  30905
  Copyright terms: Public domain W3C validator