![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdcmn | Structured version Visualization version GIF version |
Description: A semimodule is a commutative monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdcmn | ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2733 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | eqid 2733 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
6 | eqid 2733 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
7 | eqid 2733 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
8 | eqid 2733 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
9 | eqid 2733 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
10 | eqid 2733 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | isslmd 32325 | . 2 ⊢ (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ (Scalar‘𝑊) ∈ SRing ∧ ∀𝑤 ∈ (Base‘(Scalar‘𝑊))∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝑧( ·𝑠 ‘𝑊)(𝑦(+g‘𝑊)𝑥)) = ((𝑧( ·𝑠 ‘𝑊)𝑦)(+g‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑤(+g‘(Scalar‘𝑊))𝑧)( ·𝑠 ‘𝑊)𝑦) = ((𝑤( ·𝑠 ‘𝑊)𝑦)(+g‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦))) ∧ (((𝑤(.r‘(Scalar‘𝑊))𝑧)( ·𝑠 ‘𝑊)𝑦) = (𝑤( ·𝑠 ‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑦) = 𝑦 ∧ ((0g‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑦) = (0g‘𝑊))))) |
12 | 11 | simp1bi 1146 | 1 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ‘cfv 6540 (class class class)co 7404 Basecbs 17140 +gcplusg 17193 .rcmulr 17194 Scalarcsca 17196 ·𝑠 cvsca 17197 0gc0g 17381 CMndccmn 19641 1rcur 19996 SRingcsrg 20000 SLModcslmd 32323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rab 3434 df-v 3477 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-ov 7407 df-slmd 32324 |
This theorem is referenced by: slmdmnd 32329 gsumvsca1 32349 gsumvsca2 32350 |
Copyright terms: Public domain | W3C validator |