Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdcmn Structured version   Visualization version   GIF version

Theorem slmdcmn 33165
Description: A semimodule is a commutative monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
slmdcmn (𝑊 ∈ SLMod → 𝑊 ∈ CMnd)

Proof of Theorem slmdcmn
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2730 . . 3 (+g𝑊) = (+g𝑊)
3 eqid 2730 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 eqid 2730 . . 3 (0g𝑊) = (0g𝑊)
5 eqid 2730 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2730 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
7 eqid 2730 . . 3 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
8 eqid 2730 . . 3 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
9 eqid 2730 . . 3 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
10 eqid 2730 . . 3 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10isslmd 33162 . 2 (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ (Scalar‘𝑊) ∈ SRing ∧ ∀𝑤 ∈ (Base‘(Scalar‘𝑊))∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝑧( ·𝑠𝑊)(𝑦(+g𝑊)𝑥)) = ((𝑧( ·𝑠𝑊)𝑦)(+g𝑊)(𝑧( ·𝑠𝑊)𝑥)) ∧ ((𝑤(+g‘(Scalar‘𝑊))𝑧)( ·𝑠𝑊)𝑦) = ((𝑤( ·𝑠𝑊)𝑦)(+g𝑊)(𝑧( ·𝑠𝑊)𝑦))) ∧ (((𝑤(.r‘(Scalar‘𝑊))𝑧)( ·𝑠𝑊)𝑦) = (𝑤( ·𝑠𝑊)(𝑧( ·𝑠𝑊)𝑦)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑦) = 𝑦 ∧ ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑦) = (0g𝑊)))))
1211simp1bi 1145 1 (𝑊 ∈ SLMod → 𝑊 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  CMndccmn 19717  1rcur 20097  SRingcsrg 20102  SLModcslmd 33160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-slmd 33161
This theorem is referenced by:  slmdmnd  33166  gsumvsca1  33186  gsumvsca2  33187
  Copyright terms: Public domain W3C validator