| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdcmn | Structured version Visualization version GIF version | ||
| Description: A semimodule is a commutative monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| slmdcmn | ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2735 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2735 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2735 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 5 | eqid 2735 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 6 | eqid 2735 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 7 | eqid 2735 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 8 | eqid 2735 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
| 9 | eqid 2735 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 10 | eqid 2735 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | isslmd 33199 | . 2 ⊢ (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ (Scalar‘𝑊) ∈ SRing ∧ ∀𝑤 ∈ (Base‘(Scalar‘𝑊))∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝑧( ·𝑠 ‘𝑊)(𝑦(+g‘𝑊)𝑥)) = ((𝑧( ·𝑠 ‘𝑊)𝑦)(+g‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑤(+g‘(Scalar‘𝑊))𝑧)( ·𝑠 ‘𝑊)𝑦) = ((𝑤( ·𝑠 ‘𝑊)𝑦)(+g‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦))) ∧ (((𝑤(.r‘(Scalar‘𝑊))𝑧)( ·𝑠 ‘𝑊)𝑦) = (𝑤( ·𝑠 ‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑦) = 𝑦 ∧ ((0g‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑦) = (0g‘𝑊))))) |
| 12 | 11 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 .rcmulr 17272 Scalarcsca 17274 ·𝑠 cvsca 17275 0gc0g 17453 CMndccmn 19761 1rcur 20141 SRingcsrg 20146 SLModcslmd 33197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-slmd 33198 |
| This theorem is referenced by: slmdmnd 33203 gsumvsca1 33223 gsumvsca2 33224 |
| Copyright terms: Public domain | W3C validator |