Step | Hyp | Ref
| Expression |
1 | | gsumvsca.a |
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) |
2 | | ssid 3914 |
. . 3
⊢ 𝐴 ⊆ 𝐴 |
3 | | sseq1 3917 |
. . . . . . 7
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
4 | 3 | anbi2d 631 |
. . . . . 6
⊢ (𝑎 = ∅ → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴))) |
5 | | mpteq1 5120 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) |
6 | 5 | oveq2d 7166 |
. . . . . . 7
⊢ (𝑎 = ∅ → (𝑊 Σg
(𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄)))) |
7 | | mpteq1 5120 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (𝑘 ∈ 𝑎 ↦ 𝑃) = (𝑘 ∈ ∅ ↦ 𝑃)) |
8 | 7 | oveq2d 7166 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝐺 Σg
(𝑘 ∈ 𝑎 ↦ 𝑃)) = (𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃))) |
9 | 8 | oveq1d 7165 |
. . . . . . 7
⊢ (𝑎 = ∅ → ((𝐺 Σg
(𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄)) |
10 | 6, 9 | eqeq12d 2774 |
. . . . . 6
⊢ (𝑎 = ∅ → ((𝑊 Σg
(𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄))) |
11 | 4, 10 | imbi12d 348 |
. . . . 5
⊢ (𝑎 = ∅ → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄)) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄)))) |
12 | | sseq1 3917 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → (𝑎 ⊆ 𝐴 ↔ 𝑒 ⊆ 𝐴)) |
13 | 12 | anbi2d 631 |
. . . . . 6
⊢ (𝑎 = 𝑒 → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ 𝑒 ⊆ 𝐴))) |
14 | | mpteq1 5120 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) |
15 | 14 | oveq2d 7166 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄)))) |
16 | | mpteq1 5120 |
. . . . . . . . 9
⊢ (𝑎 = 𝑒 → (𝑘 ∈ 𝑎 ↦ 𝑃) = (𝑘 ∈ 𝑒 ↦ 𝑃)) |
17 | 16 | oveq2d 7166 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) = (𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))) |
18 | 17 | oveq1d 7165 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) |
19 | 15, 18 | eqeq12d 2774 |
. . . . . 6
⊢ (𝑎 = 𝑒 → ((𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄))) |
20 | 13, 19 | imbi12d 348 |
. . . . 5
⊢ (𝑎 = 𝑒 → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄)) ↔ ((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)))) |
21 | | sseq1 3917 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑎 ⊆ 𝐴 ↔ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) |
22 | 21 | anbi2d 631 |
. . . . . 6
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴))) |
23 | | mpteq1 5120 |
. . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) |
24 | 23 | oveq2d 7166 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄)))) |
25 | | mpteq1 5120 |
. . . . . . . . 9
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑘 ∈ 𝑎 ↦ 𝑃) = (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) |
26 | 25 | oveq2d 7166 |
. . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) = (𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃))) |
27 | 26 | oveq1d 7165 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)) |
28 | 24, 27 | eqeq12d 2774 |
. . . . . 6
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → ((𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))) |
29 | 22, 28 | imbi12d 348 |
. . . . 5
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄)) ↔ ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)))) |
30 | | sseq1 3917 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
31 | 30 | anbi2d 631 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ 𝐴 ⊆ 𝐴))) |
32 | | mpteq1 5120 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) |
33 | 32 | oveq2d 7166 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄)))) |
34 | | mpteq1 5120 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑎 ↦ 𝑃) = (𝑘 ∈ 𝐴 ↦ 𝑃)) |
35 | 34 | oveq2d 7166 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃))) |
36 | 35 | oveq1d 7165 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)) |
37 | 33, 36 | eqeq12d 2774 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄))) |
38 | 31, 37 | imbi12d 348 |
. . . . 5
⊢ (𝑎 = 𝐴 → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄)) ↔ ((𝜑 ∧ 𝐴 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)))) |
39 | | gsumvsca.w |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ SLMod) |
40 | | gsumvsca2.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ 𝐵) |
41 | | gsumvsca.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑊) |
42 | | gsumvsca.g |
. . . . . . . . . 10
⊢ 𝐺 = (Scalar‘𝑊) |
43 | | gsumvsca.t |
. . . . . . . . . 10
⊢ · = (
·𝑠 ‘𝑊) |
44 | | eqid 2758 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
45 | | gsumvsca.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑊) |
46 | 41, 42, 43, 44, 45 | slmd0vs 31003 |
. . . . . . . . 9
⊢ ((𝑊 ∈ SLMod ∧ 𝑄 ∈ 𝐵) → ((0g‘𝐺) · 𝑄) = 0 ) |
47 | 39, 40, 46 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 →
((0g‘𝐺)
·
𝑄) = 0 ) |
48 | 47 | eqcomd 2764 |
. . . . . . 7
⊢ (𝜑 → 0 =
((0g‘𝐺)
·
𝑄)) |
49 | | mpt0 6473 |
. . . . . . . . 9
⊢ (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄)) = ∅ |
50 | 49 | oveq2i 7161 |
. . . . . . . 8
⊢ (𝑊 Σg
(𝑘 ∈ ∅ ↦
(𝑃 · 𝑄))) = (𝑊 Σg
∅) |
51 | 45 | gsum0 17960 |
. . . . . . . 8
⊢ (𝑊 Σg
∅) = 0 |
52 | 50, 51 | eqtri 2781 |
. . . . . . 7
⊢ (𝑊 Σg
(𝑘 ∈ ∅ ↦
(𝑃 · 𝑄))) = 0 |
53 | | mpt0 6473 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ∅ ↦ 𝑃) = ∅ |
54 | 53 | oveq2i 7161 |
. . . . . . . . 9
⊢ (𝐺 Σg
(𝑘 ∈ ∅ ↦
𝑃)) = (𝐺 Σg
∅) |
55 | 44 | gsum0 17960 |
. . . . . . . . 9
⊢ (𝐺 Σg
∅) = (0g‘𝐺) |
56 | 54, 55 | eqtri 2781 |
. . . . . . . 8
⊢ (𝐺 Σg
(𝑘 ∈ ∅ ↦
𝑃)) =
(0g‘𝐺) |
57 | 56 | oveq1i 7160 |
. . . . . . 7
⊢ ((𝐺 Σg
(𝑘 ∈ ∅ ↦
𝑃)) · 𝑄) = ((0g‘𝐺) · 𝑄) |
58 | 48, 52, 57 | 3eqtr4g 2818 |
. . . . . 6
⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄)) |
59 | 58 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄)) |
60 | | ssun1 4077 |
. . . . . . . . 9
⊢ 𝑒 ⊆ (𝑒 ∪ {𝑧}) |
61 | | sstr2 3899 |
. . . . . . . . 9
⊢ (𝑒 ⊆ (𝑒 ∪ {𝑧}) → ((𝑒 ∪ {𝑧}) ⊆ 𝐴 → 𝑒 ⊆ 𝐴)) |
62 | 60, 61 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑒 ∪ {𝑧}) ⊆ 𝐴 → 𝑒 ⊆ 𝐴) |
63 | 62 | anim2i 619 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝜑 ∧ 𝑒 ⊆ 𝐴)) |
64 | 63 | imim1i 63 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄))) |
65 | 39 | ad2antrl 727 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑊 ∈ SLMod) |
66 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(Base‘𝐺) =
(Base‘𝐺) |
67 | 42 | slmdsrg 30986 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ SLMod → 𝐺 ∈ SRing) |
68 | | srgcmn 19326 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ SRing → 𝐺 ∈ CMnd) |
69 | 65, 67, 68 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝐺 ∈ CMnd) |
70 | | vex 3413 |
. . . . . . . . . . . . 13
⊢ 𝑒 ∈ V |
71 | 70 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ∈ V) |
72 | | simplrl 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝜑) |
73 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑒 ∪ {𝑧}) ⊆ 𝐴) |
74 | 73 | unssad 4092 |
. . . . . . . . . . . . . . 15
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ⊆ 𝐴) |
75 | 74 | sselda 3892 |
. . . . . . . . . . . . . 14
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑘 ∈ 𝐴) |
76 | | gsumvsca.k |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ⊆ (Base‘𝐺)) |
77 | 76 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐾 ⊆ (Base‘𝐺)) |
78 | | gsumvsca2.c |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐾) |
79 | 77, 78 | sseldd 3893 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐺)) |
80 | 72, 75, 79 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑃 ∈ (Base‘𝐺)) |
81 | 80 | fmpttd 6870 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑘 ∈ 𝑒 ↦ 𝑃):𝑒⟶(Base‘𝐺)) |
82 | | eqid 2758 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑒 ↦ 𝑃) = (𝑘 ∈ 𝑒 ↦ 𝑃) |
83 | | simpll 766 |
. . . . . . . . . . . . 13
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ∈ Fin) |
84 | 72, 75, 78 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑃 ∈ 𝐾) |
85 | | fvexd 6673 |
. . . . . . . . . . . . 13
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (0g‘𝐺) ∈ V) |
86 | 82, 83, 84, 85 | fsuppmptdm 8877 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑘 ∈ 𝑒 ↦ 𝑃) finSupp (0g‘𝐺)) |
87 | 66, 44, 69, 71, 81, 86 | gsumcl 19103 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) ∈ (Base‘𝐺)) |
88 | 73 | unssbd 4093 |
. . . . . . . . . . . . 13
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → {𝑧} ⊆ 𝐴) |
89 | | vex 3413 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
90 | 89 | snss 4676 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐴 ↔ {𝑧} ⊆ 𝐴) |
91 | 88, 90 | sylibr 237 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ 𝐴) |
92 | 79 | ralrimiva 3113 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑃 ∈ (Base‘𝐺)) |
93 | 92 | ad2antrl 727 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ∀𝑘 ∈ 𝐴 𝑃 ∈ (Base‘𝐺)) |
94 | | rspcsbela 4332 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝑃 ∈ (Base‘𝐺)) → ⦋𝑧 / 𝑘⦌𝑃 ∈ (Base‘𝐺)) |
95 | 91, 93, 94 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ⦋𝑧 / 𝑘⦌𝑃 ∈ (Base‘𝐺)) |
96 | 40 | ad2antrl 727 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑄 ∈ 𝐵) |
97 | | gsumvsca.p |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝑊) |
98 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
99 | 41, 97, 42, 43, 66, 98 | slmdvsdir 30995 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ SLMod ∧ ((𝐺 Σg
(𝑘 ∈ 𝑒 ↦ 𝑃)) ∈ (Base‘𝐺) ∧ ⦋𝑧 / 𝑘⦌𝑃 ∈ (Base‘𝐺) ∧ 𝑄 ∈ 𝐵)) → (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))(+g‘𝐺)⦋𝑧 / 𝑘⦌𝑃) · 𝑄) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
100 | 65, 87, 95, 96, 99 | syl13anc 1369 |
. . . . . . . . . 10
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))(+g‘𝐺)⦋𝑧 / 𝑘⦌𝑃) · 𝑄) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
101 | 100 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))(+g‘𝐺)⦋𝑧 / 𝑘⦌𝑃) · 𝑄) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
102 | | nfcsb1v 3829 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝑃 |
103 | 89 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ V) |
104 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧 ∈ 𝑒) |
105 | | csbeq1a 3819 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑧 → 𝑃 = ⦋𝑧 / 𝑘⦌𝑃) |
106 | 102, 66, 98, 69, 83, 80, 103, 104, 95, 105 | gsumunsnf 19147 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))(+g‘𝐺)⦋𝑧 / 𝑘⦌𝑃)) |
107 | 106 | oveq1d 7165 |
. . . . . . . . . 10
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))(+g‘𝐺)⦋𝑧 / 𝑘⦌𝑃) · 𝑄)) |
108 | 107 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))(+g‘𝐺)⦋𝑧 / 𝑘⦌𝑃) · 𝑄)) |
109 | | nfcv 2919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘
· |
110 | | nfcv 2919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝑄 |
111 | 102, 109,
110 | nfov 7180 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(⦋𝑧 / 𝑘⦌𝑃 · 𝑄) |
112 | | slmdcmn 30984 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) |
113 | 65, 112 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑊 ∈ CMnd) |
114 | 72, 39 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑊 ∈ SLMod) |
115 | 72, 40 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑄 ∈ 𝐵) |
116 | 41, 42, 43, 66 | slmdvscl 30993 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ SLMod ∧ 𝑃 ∈ (Base‘𝐺) ∧ 𝑄 ∈ 𝐵) → (𝑃 · 𝑄) ∈ 𝐵) |
117 | 114, 80, 115, 116 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → (𝑃 · 𝑄) ∈ 𝐵) |
118 | 41, 42, 43, 66 | slmdvscl 30993 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ SLMod ∧
⦋𝑧 / 𝑘⦌𝑃 ∈ (Base‘𝐺) ∧ 𝑄 ∈ 𝐵) → (⦋𝑧 / 𝑘⦌𝑃 · 𝑄) ∈ 𝐵) |
119 | 65, 95, 96, 118 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (⦋𝑧 / 𝑘⦌𝑃 · 𝑄) ∈ 𝐵) |
120 | 105 | oveq1d 7165 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑧 → (𝑃 · 𝑄) = (⦋𝑧 / 𝑘⦌𝑃 · 𝑄)) |
121 | 111, 41, 97, 113, 83, 117, 103, 104, 119, 120 | gsumunsnf 19147 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
122 | 121 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
123 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) |
124 | 123 | oveq1d 7165 |
. . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄)) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
125 | 122, 124 | eqtrd 2793 |
. . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
126 | 101, 108,
125 | 3eqtr4rd 2804 |
. . . . . . . 8
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)) |
127 | 126 | exp31 423 |
. . . . . . 7
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)))) |
128 | 127 | a2d 29 |
. . . . . 6
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) → (((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)))) |
129 | 64, 128 | syl5 34 |
. . . . 5
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) → (((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)))) |
130 | 11, 20, 29, 38, 59, 129 | findcard2s 8736 |
. . . 4
⊢ (𝐴 ∈ Fin → ((𝜑 ∧ 𝐴 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄))) |
131 | 130 | imp 410 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ (𝜑 ∧ 𝐴 ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)) |
132 | 2, 131 | mpanr2 703 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝜑) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)) |
133 | 1, 132 | mpancom 687 |
1
⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)) |