| Step | Hyp | Ref
| Expression |
| 1 | | gsumvsca.a |
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 2 | | ssid 4006 |
. . 3
⊢ 𝐴 ⊆ 𝐴 |
| 3 | | sseq1 4009 |
. . . . . . 7
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
| 4 | 3 | anbi2d 630 |
. . . . . 6
⊢ (𝑎 = ∅ → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴))) |
| 5 | | mpteq1 5235 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) |
| 6 | 5 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑎 = ∅ → (𝑊 Σg
(𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄)))) |
| 7 | | mpteq1 5235 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (𝑘 ∈ 𝑎 ↦ 𝑃) = (𝑘 ∈ ∅ ↦ 𝑃)) |
| 8 | 7 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝐺 Σg
(𝑘 ∈ 𝑎 ↦ 𝑃)) = (𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃))) |
| 9 | 8 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑎 = ∅ → ((𝐺 Σg
(𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄)) |
| 10 | 6, 9 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑎 = ∅ → ((𝑊 Σg
(𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄))) |
| 11 | 4, 10 | imbi12d 344 |
. . . . 5
⊢ (𝑎 = ∅ → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄)) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄)))) |
| 12 | | sseq1 4009 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → (𝑎 ⊆ 𝐴 ↔ 𝑒 ⊆ 𝐴)) |
| 13 | 12 | anbi2d 630 |
. . . . . 6
⊢ (𝑎 = 𝑒 → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ 𝑒 ⊆ 𝐴))) |
| 14 | | mpteq1 5235 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) |
| 15 | 14 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄)))) |
| 16 | | mpteq1 5235 |
. . . . . . . . 9
⊢ (𝑎 = 𝑒 → (𝑘 ∈ 𝑎 ↦ 𝑃) = (𝑘 ∈ 𝑒 ↦ 𝑃)) |
| 17 | 16 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) = (𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))) |
| 18 | 17 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) |
| 19 | 15, 18 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑎 = 𝑒 → ((𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄))) |
| 20 | 13, 19 | imbi12d 344 |
. . . . 5
⊢ (𝑎 = 𝑒 → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄)) ↔ ((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)))) |
| 21 | | sseq1 4009 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑎 ⊆ 𝐴 ↔ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) |
| 22 | 21 | anbi2d 630 |
. . . . . 6
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴))) |
| 23 | | mpteq1 5235 |
. . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) |
| 24 | 23 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄)))) |
| 25 | | mpteq1 5235 |
. . . . . . . . 9
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑘 ∈ 𝑎 ↦ 𝑃) = (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) |
| 26 | 25 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) = (𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃))) |
| 27 | 26 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)) |
| 28 | 24, 27 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → ((𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))) |
| 29 | 22, 28 | imbi12d 344 |
. . . . 5
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄)) ↔ ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)))) |
| 30 | | sseq1 4009 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 31 | 30 | anbi2d 630 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ 𝐴 ⊆ 𝐴))) |
| 32 | | mpteq1 5235 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) |
| 33 | 32 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄)))) |
| 34 | | mpteq1 5235 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑎 ↦ 𝑃) = (𝑘 ∈ 𝐴 ↦ 𝑃)) |
| 35 | 34 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃))) |
| 36 | 35 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)) |
| 37 | 33, 36 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄))) |
| 38 | 31, 37 | imbi12d 344 |
. . . . 5
⊢ (𝑎 = 𝐴 → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑎 ↦ 𝑃)) · 𝑄)) ↔ ((𝜑 ∧ 𝐴 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)))) |
| 39 | | gsumvsca.w |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ SLMod) |
| 40 | | gsumvsca2.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| 41 | | gsumvsca.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑊) |
| 42 | | gsumvsca.g |
. . . . . . . . . 10
⊢ 𝐺 = (Scalar‘𝑊) |
| 43 | | gsumvsca.t |
. . . . . . . . . 10
⊢ · = (
·𝑠 ‘𝑊) |
| 44 | | eqid 2737 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 45 | | gsumvsca.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑊) |
| 46 | 41, 42, 43, 44, 45 | slmd0vs 33230 |
. . . . . . . . 9
⊢ ((𝑊 ∈ SLMod ∧ 𝑄 ∈ 𝐵) → ((0g‘𝐺) · 𝑄) = 0 ) |
| 47 | 39, 40, 46 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 →
((0g‘𝐺)
·
𝑄) = 0 ) |
| 48 | 47 | eqcomd 2743 |
. . . . . . 7
⊢ (𝜑 → 0 =
((0g‘𝐺)
·
𝑄)) |
| 49 | | mpt0 6710 |
. . . . . . . . 9
⊢ (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄)) = ∅ |
| 50 | 49 | oveq2i 7442 |
. . . . . . . 8
⊢ (𝑊 Σg
(𝑘 ∈ ∅ ↦
(𝑃 · 𝑄))) = (𝑊 Σg
∅) |
| 51 | 45 | gsum0 18697 |
. . . . . . . 8
⊢ (𝑊 Σg
∅) = 0 |
| 52 | 50, 51 | eqtri 2765 |
. . . . . . 7
⊢ (𝑊 Σg
(𝑘 ∈ ∅ ↦
(𝑃 · 𝑄))) = 0 |
| 53 | | mpt0 6710 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ∅ ↦ 𝑃) = ∅ |
| 54 | 53 | oveq2i 7442 |
. . . . . . . . 9
⊢ (𝐺 Σg
(𝑘 ∈ ∅ ↦
𝑃)) = (𝐺 Σg
∅) |
| 55 | 44 | gsum0 18697 |
. . . . . . . . 9
⊢ (𝐺 Σg
∅) = (0g‘𝐺) |
| 56 | 54, 55 | eqtri 2765 |
. . . . . . . 8
⊢ (𝐺 Σg
(𝑘 ∈ ∅ ↦
𝑃)) =
(0g‘𝐺) |
| 57 | 56 | oveq1i 7441 |
. . . . . . 7
⊢ ((𝐺 Σg
(𝑘 ∈ ∅ ↦
𝑃)) · 𝑄) = ((0g‘𝐺) · 𝑄) |
| 58 | 48, 52, 57 | 3eqtr4g 2802 |
. . . . . 6
⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄)) |
| 59 | 58 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄)) |
| 60 | | ssun1 4178 |
. . . . . . . . 9
⊢ 𝑒 ⊆ (𝑒 ∪ {𝑧}) |
| 61 | | sstr2 3990 |
. . . . . . . . 9
⊢ (𝑒 ⊆ (𝑒 ∪ {𝑧}) → ((𝑒 ∪ {𝑧}) ⊆ 𝐴 → 𝑒 ⊆ 𝐴)) |
| 62 | 60, 61 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑒 ∪ {𝑧}) ⊆ 𝐴 → 𝑒 ⊆ 𝐴) |
| 63 | 62 | anim2i 617 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝜑 ∧ 𝑒 ⊆ 𝐴)) |
| 64 | 63 | imim1i 63 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄))) |
| 65 | 39 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑊 ∈ SLMod) |
| 66 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 67 | 42 | slmdsrg 33213 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ SLMod → 𝐺 ∈ SRing) |
| 68 | | srgcmn 20186 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ SRing → 𝐺 ∈ CMnd) |
| 69 | 65, 67, 68 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝐺 ∈ CMnd) |
| 70 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑒 ∈ V |
| 71 | 70 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ∈ V) |
| 72 | | simplrl 777 |
. . . . . . . . . . . . . 14
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝜑) |
| 73 | | simprr 773 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑒 ∪ {𝑧}) ⊆ 𝐴) |
| 74 | 73 | unssad 4193 |
. . . . . . . . . . . . . . 15
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ⊆ 𝐴) |
| 75 | 74 | sselda 3983 |
. . . . . . . . . . . . . 14
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑘 ∈ 𝐴) |
| 76 | | gsumvsca.k |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ⊆ (Base‘𝐺)) |
| 77 | 76 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐾 ⊆ (Base‘𝐺)) |
| 78 | | gsumvsca2.c |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐾) |
| 79 | 77, 78 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐺)) |
| 80 | 72, 75, 79 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑃 ∈ (Base‘𝐺)) |
| 81 | 80 | fmpttd 7135 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑘 ∈ 𝑒 ↦ 𝑃):𝑒⟶(Base‘𝐺)) |
| 82 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑒 ↦ 𝑃) = (𝑘 ∈ 𝑒 ↦ 𝑃) |
| 83 | | simpll 767 |
. . . . . . . . . . . . 13
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ∈ Fin) |
| 84 | 72, 75, 78 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑃 ∈ 𝐾) |
| 85 | | fvexd 6921 |
. . . . . . . . . . . . 13
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (0g‘𝐺) ∈ V) |
| 86 | 82, 83, 84, 85 | fsuppmptdm 9416 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑘 ∈ 𝑒 ↦ 𝑃) finSupp (0g‘𝐺)) |
| 87 | 66, 44, 69, 71, 81, 86 | gsumcl 19933 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) ∈ (Base‘𝐺)) |
| 88 | 73 | unssbd 4194 |
. . . . . . . . . . . . 13
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → {𝑧} ⊆ 𝐴) |
| 89 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
| 90 | 89 | snss 4785 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐴 ↔ {𝑧} ⊆ 𝐴) |
| 91 | 88, 90 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ 𝐴) |
| 92 | 79 | ralrimiva 3146 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑃 ∈ (Base‘𝐺)) |
| 93 | 92 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ∀𝑘 ∈ 𝐴 𝑃 ∈ (Base‘𝐺)) |
| 94 | | rspcsbela 4438 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝑃 ∈ (Base‘𝐺)) → ⦋𝑧 / 𝑘⦌𝑃 ∈ (Base‘𝐺)) |
| 95 | 91, 93, 94 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ⦋𝑧 / 𝑘⦌𝑃 ∈ (Base‘𝐺)) |
| 96 | 40 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑄 ∈ 𝐵) |
| 97 | | gsumvsca.p |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝑊) |
| 98 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 99 | 41, 97, 42, 43, 66, 98 | slmdvsdir 33222 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ SLMod ∧ ((𝐺 Σg
(𝑘 ∈ 𝑒 ↦ 𝑃)) ∈ (Base‘𝐺) ∧ ⦋𝑧 / 𝑘⦌𝑃 ∈ (Base‘𝐺) ∧ 𝑄 ∈ 𝐵)) → (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))(+g‘𝐺)⦋𝑧 / 𝑘⦌𝑃) · 𝑄) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
| 100 | 65, 87, 95, 96, 99 | syl13anc 1374 |
. . . . . . . . . 10
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))(+g‘𝐺)⦋𝑧 / 𝑘⦌𝑃) · 𝑄) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
| 101 | 100 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))(+g‘𝐺)⦋𝑧 / 𝑘⦌𝑃) · 𝑄) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
| 102 | | nfcsb1v 3923 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝑃 |
| 103 | 89 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ V) |
| 104 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧 ∈ 𝑒) |
| 105 | | csbeq1a 3913 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑧 → 𝑃 = ⦋𝑧 / 𝑘⦌𝑃) |
| 106 | 102, 66, 98, 69, 83, 80, 103, 104, 95, 105 | gsumunsnf 19977 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))(+g‘𝐺)⦋𝑧 / 𝑘⦌𝑃)) |
| 107 | 106 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))(+g‘𝐺)⦋𝑧 / 𝑘⦌𝑃) · 𝑄)) |
| 108 | 107 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃))(+g‘𝐺)⦋𝑧 / 𝑘⦌𝑃) · 𝑄)) |
| 109 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘
· |
| 110 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝑄 |
| 111 | 102, 109,
110 | nfov 7461 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(⦋𝑧 / 𝑘⦌𝑃 · 𝑄) |
| 112 | | slmdcmn 33211 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) |
| 113 | 65, 112 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑊 ∈ CMnd) |
| 114 | 72, 39 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑊 ∈ SLMod) |
| 115 | 72, 40 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑄 ∈ 𝐵) |
| 116 | 41, 42, 43, 66 | slmdvscl 33220 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ SLMod ∧ 𝑃 ∈ (Base‘𝐺) ∧ 𝑄 ∈ 𝐵) → (𝑃 · 𝑄) ∈ 𝐵) |
| 117 | 114, 80, 115, 116 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → (𝑃 · 𝑄) ∈ 𝐵) |
| 118 | 41, 42, 43, 66 | slmdvscl 33220 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ SLMod ∧
⦋𝑧 / 𝑘⦌𝑃 ∈ (Base‘𝐺) ∧ 𝑄 ∈ 𝐵) → (⦋𝑧 / 𝑘⦌𝑃 · 𝑄) ∈ 𝐵) |
| 119 | 65, 95, 96, 118 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (⦋𝑧 / 𝑘⦌𝑃 · 𝑄) ∈ 𝐵) |
| 120 | 105 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑧 → (𝑃 · 𝑄) = (⦋𝑧 / 𝑘⦌𝑃 · 𝑄)) |
| 121 | 111, 41, 97, 113, 83, 117, 103, 104, 119, 120 | gsumunsnf 19977 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
| 122 | 121 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
| 123 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) |
| 124 | 123 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄)) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
| 125 | 122, 124 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄) + (⦋𝑧 / 𝑘⦌𝑃 · 𝑄))) |
| 126 | 101, 108,
125 | 3eqtr4rd 2788 |
. . . . . . . 8
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)) |
| 127 | 126 | exp31 419 |
. . . . . . 7
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)))) |
| 128 | 127 | a2d 29 |
. . . . . 6
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) → (((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)))) |
| 129 | 64, 128 | syl5 34 |
. . . . 5
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) → (((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝑒 ↦ 𝑃)) · 𝑄)) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)))) |
| 130 | 11, 20, 29, 38, 59, 129 | findcard2s 9205 |
. . . 4
⊢ (𝐴 ∈ Fin → ((𝜑 ∧ 𝐴 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄))) |
| 131 | 130 | imp 406 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ (𝜑 ∧ 𝐴 ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)) |
| 132 | 2, 131 | mpanr2 704 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝜑) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)) |
| 133 | 1, 132 | mpancom 688 |
1
⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)) |