Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumvsca2 Structured version   Visualization version   GIF version

Theorem gsumvsca2 30230
Description: Scalar product of a finite group sum for a left module over a semiring. (Contributed by Thierry Arnoux, 16-Mar-2018.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
gsumvsca.b 𝐵 = (Base‘𝑊)
gsumvsca.g 𝐺 = (Scalar‘𝑊)
gsumvsca.z 0 = (0g𝑊)
gsumvsca.t · = ( ·𝑠𝑊)
gsumvsca.p + = (+g𝑊)
gsumvsca.k (𝜑𝐾 ⊆ (Base‘𝐺))
gsumvsca.a (𝜑𝐴 ∈ Fin)
gsumvsca.w (𝜑𝑊 ∈ SLMod)
gsumvsca2.n (𝜑𝑄𝐵)
gsumvsca2.c ((𝜑𝑘𝐴) → 𝑃𝐾)
Assertion
Ref Expression
gsumvsca2 (𝜑 → (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄))
Distinct variable groups:   · ,𝑘   𝐴,𝑘   𝑘,𝑊   𝜑,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝐾   𝑄,𝑘
Allowed substitution hints:   𝑃(𝑘)   + (𝑘)   0 (𝑘)

Proof of Theorem gsumvsca2
Dummy variables 𝑒 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumvsca.a . 2 (𝜑𝐴 ∈ Fin)
2 ssid 3783 . . 3 𝐴𝐴
3 sseq1 3786 . . . . . . 7 (𝑎 = ∅ → (𝑎𝐴 ↔ ∅ ⊆ 𝐴))
43anbi2d 622 . . . . . 6 (𝑎 = ∅ → ((𝜑𝑎𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴)))
5 mpteq1 4896 . . . . . . . 8 (𝑎 = ∅ → (𝑘𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄)))
65oveq2d 6858 . . . . . . 7 (𝑎 = ∅ → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))))
7 mpteq1 4896 . . . . . . . . 9 (𝑎 = ∅ → (𝑘𝑎𝑃) = (𝑘 ∈ ∅ ↦ 𝑃))
87oveq2d 6858 . . . . . . . 8 (𝑎 = ∅ → (𝐺 Σg (𝑘𝑎𝑃)) = (𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)))
98oveq1d 6857 . . . . . . 7 (𝑎 = ∅ → ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄))
106, 9eqeq12d 2780 . . . . . 6 (𝑎 = ∅ → ((𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄)))
114, 10imbi12d 335 . . . . 5 (𝑎 = ∅ → (((𝜑𝑎𝐴) → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄)) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄))))
12 sseq1 3786 . . . . . . 7 (𝑎 = 𝑒 → (𝑎𝐴𝑒𝐴))
1312anbi2d 622 . . . . . 6 (𝑎 = 𝑒 → ((𝜑𝑎𝐴) ↔ (𝜑𝑒𝐴)))
14 mpteq1 4896 . . . . . . . 8 (𝑎 = 𝑒 → (𝑘𝑎 ↦ (𝑃 · 𝑄)) = (𝑘𝑒 ↦ (𝑃 · 𝑄)))
1514oveq2d 6858 . . . . . . 7 (𝑎 = 𝑒 → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))))
16 mpteq1 4896 . . . . . . . . 9 (𝑎 = 𝑒 → (𝑘𝑎𝑃) = (𝑘𝑒𝑃))
1716oveq2d 6858 . . . . . . . 8 (𝑎 = 𝑒 → (𝐺 Σg (𝑘𝑎𝑃)) = (𝐺 Σg (𝑘𝑒𝑃)))
1817oveq1d 6857 . . . . . . 7 (𝑎 = 𝑒 → ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄))
1915, 18eqeq12d 2780 . . . . . 6 (𝑎 = 𝑒 → ((𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)))
2013, 19imbi12d 335 . . . . 5 (𝑎 = 𝑒 → (((𝜑𝑎𝐴) → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄)) ↔ ((𝜑𝑒𝐴) → (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄))))
21 sseq1 3786 . . . . . . 7 (𝑎 = (𝑒 ∪ {𝑧}) → (𝑎𝐴 ↔ (𝑒 ∪ {𝑧}) ⊆ 𝐴))
2221anbi2d 622 . . . . . 6 (𝑎 = (𝑒 ∪ {𝑧}) → ((𝜑𝑎𝐴) ↔ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)))
23 mpteq1 4896 . . . . . . . 8 (𝑎 = (𝑒 ∪ {𝑧}) → (𝑘𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄)))
2423oveq2d 6858 . . . . . . 7 (𝑎 = (𝑒 ∪ {𝑧}) → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))))
25 mpteq1 4896 . . . . . . . . 9 (𝑎 = (𝑒 ∪ {𝑧}) → (𝑘𝑎𝑃) = (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃))
2625oveq2d 6858 . . . . . . . 8 (𝑎 = (𝑒 ∪ {𝑧}) → (𝐺 Σg (𝑘𝑎𝑃)) = (𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)))
2726oveq1d 6857 . . . . . . 7 (𝑎 = (𝑒 ∪ {𝑧}) → ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))
2824, 27eqeq12d 2780 . . . . . 6 (𝑎 = (𝑒 ∪ {𝑧}) → ((𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)))
2922, 28imbi12d 335 . . . . 5 (𝑎 = (𝑒 ∪ {𝑧}) → (((𝜑𝑎𝐴) → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄)) ↔ ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))))
30 sseq1 3786 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝐴𝐴𝐴))
3130anbi2d 622 . . . . . 6 (𝑎 = 𝐴 → ((𝜑𝑎𝐴) ↔ (𝜑𝐴𝐴)))
32 mpteq1 4896 . . . . . . . 8 (𝑎 = 𝐴 → (𝑘𝑎 ↦ (𝑃 · 𝑄)) = (𝑘𝐴 ↦ (𝑃 · 𝑄)))
3332oveq2d 6858 . . . . . . 7 (𝑎 = 𝐴 → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))))
34 mpteq1 4896 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑘𝑎𝑃) = (𝑘𝐴𝑃))
3534oveq2d 6858 . . . . . . . 8 (𝑎 = 𝐴 → (𝐺 Σg (𝑘𝑎𝑃)) = (𝐺 Σg (𝑘𝐴𝑃)))
3635oveq1d 6857 . . . . . . 7 (𝑎 = 𝐴 → ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄))
3733, 36eqeq12d 2780 . . . . . 6 (𝑎 = 𝐴 → ((𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄)))
3831, 37imbi12d 335 . . . . 5 (𝑎 = 𝐴 → (((𝜑𝑎𝐴) → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄)) ↔ ((𝜑𝐴𝐴) → (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄))))
39 gsumvsca.w . . . . . . . . 9 (𝜑𝑊 ∈ SLMod)
40 gsumvsca2.n . . . . . . . . 9 (𝜑𝑄𝐵)
41 gsumvsca.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
42 gsumvsca.g . . . . . . . . . 10 𝐺 = (Scalar‘𝑊)
43 gsumvsca.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
44 eqid 2765 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
45 gsumvsca.z . . . . . . . . . 10 0 = (0g𝑊)
4641, 42, 43, 44, 45slmd0vs 30224 . . . . . . . . 9 ((𝑊 ∈ SLMod ∧ 𝑄𝐵) → ((0g𝐺) · 𝑄) = 0 )
4739, 40, 46syl2anc 579 . . . . . . . 8 (𝜑 → ((0g𝐺) · 𝑄) = 0 )
4847eqcomd 2771 . . . . . . 7 (𝜑0 = ((0g𝐺) · 𝑄))
49 mpt0 6199 . . . . . . . . 9 (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄)) = ∅
5049oveq2i 6853 . . . . . . . 8 (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = (𝑊 Σg ∅)
5145gsum0 17544 . . . . . . . 8 (𝑊 Σg ∅) = 0
5250, 51eqtri 2787 . . . . . . 7 (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = 0
53 mpt0 6199 . . . . . . . . . 10 (𝑘 ∈ ∅ ↦ 𝑃) = ∅
5453oveq2i 6853 . . . . . . . . 9 (𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) = (𝐺 Σg ∅)
5544gsum0 17544 . . . . . . . . 9 (𝐺 Σg ∅) = (0g𝐺)
5654, 55eqtri 2787 . . . . . . . 8 (𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) = (0g𝐺)
5756oveq1i 6852 . . . . . . 7 ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄) = ((0g𝐺) · 𝑄)
5848, 52, 573eqtr4g 2824 . . . . . 6 (𝜑 → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄))
5958adantr 472 . . . . 5 ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄))
60 ssun1 3938 . . . . . . . . 9 𝑒 ⊆ (𝑒 ∪ {𝑧})
61 sstr2 3768 . . . . . . . . 9 (𝑒 ⊆ (𝑒 ∪ {𝑧}) → ((𝑒 ∪ {𝑧}) ⊆ 𝐴𝑒𝐴))
6260, 61ax-mp 5 . . . . . . . 8 ((𝑒 ∪ {𝑧}) ⊆ 𝐴𝑒𝐴)
6362anim2i 610 . . . . . . 7 ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝜑𝑒𝐴))
6463imim1i 63 . . . . . 6 (((𝜑𝑒𝐴) → (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)))
6539ad2antrl 719 . . . . . . . . . . 11 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑊 ∈ SLMod)
66 eqid 2765 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
6742slmdsrg 30207 . . . . . . . . . . . . 13 (𝑊 ∈ SLMod → 𝐺 ∈ SRing)
68 srgcmn 18775 . . . . . . . . . . . . 13 (𝐺 ∈ SRing → 𝐺 ∈ CMnd)
6965, 67, 683syl 18 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝐺 ∈ CMnd)
70 vex 3353 . . . . . . . . . . . . 13 𝑒 ∈ V
7170a1i 11 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ∈ V)
72 simplrl 795 . . . . . . . . . . . . . 14 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → 𝜑)
73 simprr 789 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑒 ∪ {𝑧}) ⊆ 𝐴)
7473unssad 3952 . . . . . . . . . . . . . . 15 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒𝐴)
7574sselda 3761 . . . . . . . . . . . . . 14 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → 𝑘𝐴)
76 gsumvsca.k . . . . . . . . . . . . . . . 16 (𝜑𝐾 ⊆ (Base‘𝐺))
7776adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐾 ⊆ (Base‘𝐺))
78 gsumvsca2.c . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝑃𝐾)
7977, 78sseldd 3762 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑃 ∈ (Base‘𝐺))
8072, 75, 79syl2anc 579 . . . . . . . . . . . . 13 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → 𝑃 ∈ (Base‘𝐺))
8180fmpttd 6575 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑘𝑒𝑃):𝑒⟶(Base‘𝐺))
82 eqid 2765 . . . . . . . . . . . . 13 (𝑘𝑒𝑃) = (𝑘𝑒𝑃)
83 simpll 783 . . . . . . . . . . . . 13 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ∈ Fin)
8472, 75, 78syl2anc 579 . . . . . . . . . . . . 13 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → 𝑃𝐾)
85 fvexd 6390 . . . . . . . . . . . . 13 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (0g𝐺) ∈ V)
8682, 83, 84, 85fsuppmptdm 8493 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑘𝑒𝑃) finSupp (0g𝐺))
8766, 44, 69, 71, 81, 86gsumcl 18582 . . . . . . . . . . 11 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝐺 Σg (𝑘𝑒𝑃)) ∈ (Base‘𝐺))
8873unssbd 3953 . . . . . . . . . . . . 13 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → {𝑧} ⊆ 𝐴)
89 vex 3353 . . . . . . . . . . . . . 14 𝑧 ∈ V
9089snss 4470 . . . . . . . . . . . . 13 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
9188, 90sylibr 225 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧𝐴)
9279ralrimiva 3113 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐴 𝑃 ∈ (Base‘𝐺))
9392ad2antrl 719 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ∀𝑘𝐴 𝑃 ∈ (Base‘𝐺))
94 rspcsbela 4168 . . . . . . . . . . . 12 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝑃 ∈ (Base‘𝐺)) → 𝑧 / 𝑘𝑃 ∈ (Base‘𝐺))
9591, 93, 94syl2anc 579 . . . . . . . . . . 11 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 / 𝑘𝑃 ∈ (Base‘𝐺))
9640ad2antrl 719 . . . . . . . . . . 11 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑄𝐵)
97 gsumvsca.p . . . . . . . . . . . 12 + = (+g𝑊)
98 eqid 2765 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
9941, 97, 42, 43, 66, 98slmdvsdir 30216 . . . . . . . . . . 11 ((𝑊 ∈ SLMod ∧ ((𝐺 Σg (𝑘𝑒𝑃)) ∈ (Base‘𝐺) ∧ 𝑧 / 𝑘𝑃 ∈ (Base‘𝐺) ∧ 𝑄𝐵)) → (((𝐺 Σg (𝑘𝑒𝑃))(+g𝐺)𝑧 / 𝑘𝑃) · 𝑄) = (((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄) + (𝑧 / 𝑘𝑃 · 𝑄)))
10065, 87, 95, 96, 99syl13anc 1491 . . . . . . . . . 10 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (((𝐺 Σg (𝑘𝑒𝑃))(+g𝐺)𝑧 / 𝑘𝑃) · 𝑄) = (((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄) + (𝑧 / 𝑘𝑃 · 𝑄)))
101100adantr 472 . . . . . . . . 9 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → (((𝐺 Σg (𝑘𝑒𝑃))(+g𝐺)𝑧 / 𝑘𝑃) · 𝑄) = (((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄) + (𝑧 / 𝑘𝑃 · 𝑄)))
102 nfcsb1v 3707 . . . . . . . . . . . 12 𝑘𝑧 / 𝑘𝑃
10389a1i 11 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ V)
104 simplr 785 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧𝑒)
105 csbeq1a 3700 . . . . . . . . . . . 12 (𝑘 = 𝑧𝑃 = 𝑧 / 𝑘𝑃)
106102, 66, 98, 69, 83, 80, 103, 104, 95, 105gsumunsnf 18624 . . . . . . . . . . 11 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) = ((𝐺 Σg (𝑘𝑒𝑃))(+g𝐺)𝑧 / 𝑘𝑃))
107106oveq1d 6857 . . . . . . . . . 10 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄) = (((𝐺 Σg (𝑘𝑒𝑃))(+g𝐺)𝑧 / 𝑘𝑃) · 𝑄))
108107adantr 472 . . . . . . . . 9 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄) = (((𝐺 Σg (𝑘𝑒𝑃))(+g𝐺)𝑧 / 𝑘𝑃) · 𝑄))
109 nfcv 2907 . . . . . . . . . . . . 13 𝑘 ·
110 nfcv 2907 . . . . . . . . . . . . 13 𝑘𝑄
111102, 109, 110nfov 6872 . . . . . . . . . . . 12 𝑘(𝑧 / 𝑘𝑃 · 𝑄)
112 slmdcmn 30205 . . . . . . . . . . . . 13 (𝑊 ∈ SLMod → 𝑊 ∈ CMnd)
11365, 112syl 17 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑊 ∈ CMnd)
11472, 39syl 17 . . . . . . . . . . . . 13 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → 𝑊 ∈ SLMod)
11572, 40syl 17 . . . . . . . . . . . . 13 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → 𝑄𝐵)
11641, 42, 43, 66slmdvscl 30214 . . . . . . . . . . . . 13 ((𝑊 ∈ SLMod ∧ 𝑃 ∈ (Base‘𝐺) ∧ 𝑄𝐵) → (𝑃 · 𝑄) ∈ 𝐵)
117114, 80, 115, 116syl3anc 1490 . . . . . . . . . . . 12 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → (𝑃 · 𝑄) ∈ 𝐵)
11841, 42, 43, 66slmdvscl 30214 . . . . . . . . . . . . 13 ((𝑊 ∈ SLMod ∧ 𝑧 / 𝑘𝑃 ∈ (Base‘𝐺) ∧ 𝑄𝐵) → (𝑧 / 𝑘𝑃 · 𝑄) ∈ 𝐵)
11965, 95, 96, 118syl3anc 1490 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑧 / 𝑘𝑃 · 𝑄) ∈ 𝐵)
120105oveq1d 6857 . . . . . . . . . . . 12 (𝑘 = 𝑧 → (𝑃 · 𝑄) = (𝑧 / 𝑘𝑃 · 𝑄))
121111, 41, 97, 113, 83, 117, 103, 104, 119, 120gsumunsnf 18624 . . . . . . . . . . 11 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) + (𝑧 / 𝑘𝑃 · 𝑄)))
122121adantr 472 . . . . . . . . . 10 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) + (𝑧 / 𝑘𝑃 · 𝑄)))
123 simpr 477 . . . . . . . . . . 11 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄))
124123oveq1d 6857 . . . . . . . . . 10 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → ((𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) + (𝑧 / 𝑘𝑃 · 𝑄)) = (((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄) + (𝑧 / 𝑘𝑃 · 𝑄)))
125122, 124eqtrd 2799 . . . . . . . . 9 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄) + (𝑧 / 𝑘𝑃 · 𝑄)))
126101, 108, 1253eqtr4rd 2810 . . . . . . . 8 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))
127126exp31 410 . . . . . . 7 ((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → ((𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))))
128127a2d 29 . . . . . 6 ((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) → (((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))))
12964, 128syl5 34 . . . . 5 ((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) → (((𝜑𝑒𝐴) → (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))))
13011, 20, 29, 38, 59, 129findcard2s 8408 . . . 4 (𝐴 ∈ Fin → ((𝜑𝐴𝐴) → (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄)))
131130imp 395 . . 3 ((𝐴 ∈ Fin ∧ (𝜑𝐴𝐴)) → (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄))
1322, 131mpanr2 695 . 2 ((𝐴 ∈ Fin ∧ 𝜑) → (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄))
1331, 132mpancom 679 1 (𝜑 → (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  csb 3691  cun 3730  wss 3732  c0 4079  {csn 4334  cmpt 4888  cfv 6068  (class class class)co 6842  Fincfn 8160  Basecbs 16130  +gcplusg 16214  Scalarcsca 16217   ·𝑠 cvsca 16218  0gc0g 16366   Σg cgsu 16367  CMndccmn 18459  SRingcsrg 18772  SLModcslmd 30200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-0g 16368  df-gsum 16369  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-srg 18773  df-slmd 30201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator