Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmodslmd Structured version   Visualization version   GIF version

Theorem lmodslmd 33149
Description: Left semimodules generalize the notion of left modules. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
lmodslmd (𝑊 ∈ LMod → 𝑊 ∈ SLMod)

Proof of Theorem lmodslmd
Dummy variables 𝑟 𝑞 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodcmn 20876 . 2 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
2 eqid 2734 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
32lmodring 20834 . . 3 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
4 ringsrg 20262 . . 3 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ SRing)
53, 4syl 17 . 2 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ SRing)
6 eqid 2734 . . . . . . . . . . . . . 14 (Base‘𝑊) = (Base‘𝑊)
7 eqid 2734 . . . . . . . . . . . . . 14 (+g𝑊) = (+g𝑊)
8 eqid 2734 . . . . . . . . . . . . . 14 ( ·𝑠𝑊) = ( ·𝑠𝑊)
9 eqid 2734 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
10 eqid 2734 . . . . . . . . . . . . . 14 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
11 eqid 2734 . . . . . . . . . . . . . 14 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
12 eqid 2734 . . . . . . . . . . . . . 14 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
136, 7, 8, 2, 9, 10, 11, 12islmod 20830 . . . . . . . . . . . . 13 (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤))))
1413simp3bi 1147 . . . . . . . . . . . 12 (𝑊 ∈ LMod → ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤)))
1514r19.21bi 3237 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤)))
1615r19.21bi 3237 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → ∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤)))
1716r19.21bi 3237 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → ∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤)))
1817r19.21bi 3237 . . . . . . . 8 (((((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) ∧ 𝑤 ∈ (Base‘𝑊)) → (((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤)))
1918simpld 494 . . . . . . 7 (((((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) ∧ 𝑤 ∈ (Base‘𝑊)) → ((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))))
2018simprd 495 . . . . . . . . 9 (((((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) ∧ 𝑤 ∈ (Base‘𝑊)) → (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤))
2120simpld 494 . . . . . . . 8 (((((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) ∧ 𝑤 ∈ (Base‘𝑊)) → ((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)))
2220simprd 495 . . . . . . . 8 (((((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) ∧ 𝑤 ∈ (Base‘𝑊)) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤)
23 simp-4l 782 . . . . . . . . 9 (((((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) ∧ 𝑤 ∈ (Base‘𝑊)) → 𝑊 ∈ LMod)
24 eqid 2734 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
25 eqid 2734 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
266, 2, 8, 24, 25lmod0vs 20861 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑤 ∈ (Base‘𝑊)) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = (0g𝑊))
2723, 26sylancom 588 . . . . . . . 8 (((((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) ∧ 𝑤 ∈ (Base‘𝑊)) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = (0g𝑊))
2821, 22, 273jca 1128 . . . . . . 7 (((((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) ∧ 𝑤 ∈ (Base‘𝑊)) → (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤 ∧ ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = (0g𝑊)))
2919, 28jca 511 . . . . . 6 (((((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) ∧ 𝑤 ∈ (Base‘𝑊)) → (((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤 ∧ ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = (0g𝑊))))
3029ralrimiva 3133 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → ∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤 ∧ ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = (0g𝑊))))
3130ralrimiva 3133 . . . 4 (((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → ∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤 ∧ ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = (0g𝑊))))
3231ralrimiva 3133 . . 3 ((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤 ∧ ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = (0g𝑊))))
3332ralrimiva 3133 . 2 (𝑊 ∈ LMod → ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤 ∧ ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = (0g𝑊))))
346, 7, 8, 25, 2, 9, 10, 11, 12, 24isslmd 33147 . 2 (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ (Scalar‘𝑊) ∈ SRing ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠𝑊)(𝑤(+g𝑊)𝑥)) = ((𝑟( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = ((𝑞( ·𝑠𝑊)𝑤)(+g𝑊)(𝑟( ·𝑠𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑤) = (𝑞( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = 𝑤 ∧ ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑤) = (0g𝑊)))))
351, 5, 33, 34syl3anbrc 1343 1 (𝑊 ∈ LMod → 𝑊 ∈ SLMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  cfv 6541  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  .rcmulr 17274  Scalarcsca 17276   ·𝑠 cvsca 17277  0gc0g 17455  Grpcgrp 18920  CMndccmn 19766  1rcur 20146  SRingcsrg 20151  Ringcrg 20198  LModclmod 20826  SLModcslmd 33145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-plusg 17286  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-lmod 20828  df-slmd 33146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator