| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | gsumvsca.a | . 2
⊢ (𝜑 → 𝐴 ∈ Fin) | 
| 2 |  | ssid 4006 | . . 3
⊢ 𝐴 ⊆ 𝐴 | 
| 3 |  | sseq1 4009 | . . . . . . 7
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) | 
| 4 | 3 | anbi2d 630 | . . . . . 6
⊢ (𝑎 = ∅ → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴))) | 
| 5 |  | mpteq1 5235 | . . . . . . . 8
⊢ (𝑎 = ∅ → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) | 
| 6 | 5 | oveq2d 7447 | . . . . . . 7
⊢ (𝑎 = ∅ → (𝑊 Σg
(𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄)))) | 
| 7 |  | mpteq1 5235 | . . . . . . . . 9
⊢ (𝑎 = ∅ → (𝑘 ∈ 𝑎 ↦ 𝑄) = (𝑘 ∈ ∅ ↦ 𝑄)) | 
| 8 | 7 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑎 = ∅ → (𝑊 Σg
(𝑘 ∈ 𝑎 ↦ 𝑄)) = (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄))) | 
| 9 | 8 | oveq2d 7447 | . . . . . . 7
⊢ (𝑎 = ∅ → (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄)))) | 
| 10 | 6, 9 | eqeq12d 2753 | . . . . . 6
⊢ (𝑎 = ∅ → ((𝑊 Σg
(𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) ↔ (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄))))) | 
| 11 | 4, 10 | imbi12d 344 | . . . . 5
⊢ (𝑎 = ∅ → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)))) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄)))))) | 
| 12 |  | sseq1 4009 | . . . . . . 7
⊢ (𝑎 = 𝑒 → (𝑎 ⊆ 𝐴 ↔ 𝑒 ⊆ 𝐴)) | 
| 13 | 12 | anbi2d 630 | . . . . . 6
⊢ (𝑎 = 𝑒 → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ 𝑒 ⊆ 𝐴))) | 
| 14 |  | mpteq1 5235 | . . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) | 
| 15 | 14 | oveq2d 7447 | . . . . . . 7
⊢ (𝑎 = 𝑒 → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄)))) | 
| 16 |  | mpteq1 5235 | . . . . . . . . 9
⊢ (𝑎 = 𝑒 → (𝑘 ∈ 𝑎 ↦ 𝑄) = (𝑘 ∈ 𝑒 ↦ 𝑄)) | 
| 17 | 16 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)) = (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) | 
| 18 | 17 | oveq2d 7447 | . . . . . . 7
⊢ (𝑎 = 𝑒 → (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) | 
| 19 | 15, 18 | eqeq12d 2753 | . . . . . 6
⊢ (𝑎 = 𝑒 → ((𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) ↔ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))))) | 
| 20 | 13, 19 | imbi12d 344 | . . . . 5
⊢ (𝑎 = 𝑒 → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)))) ↔ ((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))))) | 
| 21 |  | sseq1 4009 | . . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑎 ⊆ 𝐴 ↔ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) | 
| 22 | 21 | anbi2d 630 | . . . . . 6
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴))) | 
| 23 |  | mpteq1 5235 | . . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) | 
| 24 | 23 | oveq2d 7447 | . . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄)))) | 
| 25 |  | mpteq1 5235 | . . . . . . . . 9
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑘 ∈ 𝑎 ↦ 𝑄) = (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)) | 
| 26 | 25 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)) = (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄))) | 
| 27 | 26 | oveq2d 7447 | . . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)))) | 
| 28 | 24, 27 | eqeq12d 2753 | . . . . . 6
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → ((𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) ↔ (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄))))) | 
| 29 | 22, 28 | imbi12d 344 | . . . . 5
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)))) ↔ ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)))))) | 
| 30 |  | sseq1 4009 | . . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) | 
| 31 | 30 | anbi2d 630 | . . . . . 6
⊢ (𝑎 = 𝐴 → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ 𝐴 ⊆ 𝐴))) | 
| 32 |  | mpteq1 5235 | . . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) | 
| 33 | 32 | oveq2d 7447 | . . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄)))) | 
| 34 |  | mpteq1 5235 | . . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑎 ↦ 𝑄) = (𝑘 ∈ 𝐴 ↦ 𝑄)) | 
| 35 | 34 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)) = (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄))) | 
| 36 | 35 | oveq2d 7447 | . . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))) | 
| 37 | 33, 36 | eqeq12d 2753 | . . . . . 6
⊢ (𝑎 = 𝐴 → ((𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) ↔ (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄))))) | 
| 38 | 31, 37 | imbi12d 344 | . . . . 5
⊢ (𝑎 = 𝐴 → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)))) ↔ ((𝜑 ∧ 𝐴 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))))) | 
| 39 |  | gsumvsca.w | . . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ SLMod) | 
| 40 |  | gsumvsca.k | . . . . . . . . . 10
⊢ (𝜑 → 𝐾 ⊆ (Base‘𝐺)) | 
| 41 |  | gsumvsca1.n | . . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ 𝐾) | 
| 42 | 40, 41 | sseldd 3984 | . . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ (Base‘𝐺)) | 
| 43 |  | gsumvsca.g | . . . . . . . . . 10
⊢ 𝐺 = (Scalar‘𝑊) | 
| 44 |  | gsumvsca.t | . . . . . . . . . 10
⊢  · = (
·𝑠 ‘𝑊) | 
| 45 |  | eqid 2737 | . . . . . . . . . 10
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 46 |  | gsumvsca.z | . . . . . . . . . 10
⊢  0 =
(0g‘𝑊) | 
| 47 | 43, 44, 45, 46 | slmdvs0 33231 | . . . . . . . . 9
⊢ ((𝑊 ∈ SLMod ∧ 𝑃 ∈ (Base‘𝐺)) → (𝑃 · 0 ) = 0 ) | 
| 48 | 39, 42, 47 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → (𝑃 · 0 ) = 0 ) | 
| 49 | 48 | eqcomd 2743 | . . . . . . 7
⊢ (𝜑 → 0 = (𝑃 · 0 )) | 
| 50 |  | mpt0 6710 | . . . . . . . . 9
⊢ (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄)) = ∅ | 
| 51 | 50 | oveq2i 7442 | . . . . . . . 8
⊢ (𝑊 Σg
(𝑘 ∈ ∅ ↦
(𝑃 · 𝑄))) = (𝑊 Σg
∅) | 
| 52 | 46 | gsum0 18697 | . . . . . . . 8
⊢ (𝑊 Σg
∅) = 0 | 
| 53 | 51, 52 | eqtri 2765 | . . . . . . 7
⊢ (𝑊 Σg
(𝑘 ∈ ∅ ↦
(𝑃 · 𝑄))) = 0 | 
| 54 |  | mpt0 6710 | . . . . . . . . . 10
⊢ (𝑘 ∈ ∅ ↦ 𝑄) = ∅ | 
| 55 | 54 | oveq2i 7442 | . . . . . . . . 9
⊢ (𝑊 Σg
(𝑘 ∈ ∅ ↦
𝑄)) = (𝑊 Σg
∅) | 
| 56 | 55, 52 | eqtri 2765 | . . . . . . . 8
⊢ (𝑊 Σg
(𝑘 ∈ ∅ ↦
𝑄)) = 0 | 
| 57 | 56 | oveq2i 7442 | . . . . . . 7
⊢ (𝑃 · (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄))) = (𝑃 · 0 ) | 
| 58 | 49, 53, 57 | 3eqtr4g 2802 | . . . . . 6
⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄)))) | 
| 59 | 58 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄)))) | 
| 60 |  | ssun1 4178 | . . . . . . . . 9
⊢ 𝑒 ⊆ (𝑒 ∪ {𝑧}) | 
| 61 |  | sstr2 3990 | . . . . . . . . 9
⊢ (𝑒 ⊆ (𝑒 ∪ {𝑧}) → ((𝑒 ∪ {𝑧}) ⊆ 𝐴 → 𝑒 ⊆ 𝐴)) | 
| 62 | 60, 61 | ax-mp 5 | . . . . . . . 8
⊢ ((𝑒 ∪ {𝑧}) ⊆ 𝐴 → 𝑒 ⊆ 𝐴) | 
| 63 | 62 | anim2i 617 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝜑 ∧ 𝑒 ⊆ 𝐴)) | 
| 64 | 63 | imim1i 63 | . . . . . 6
⊢ (((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))))) | 
| 65 | 39 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑊 ∈ SLMod) | 
| 66 | 42 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑃 ∈ (Base‘𝐺)) | 
| 67 |  | gsumvsca.b | . . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑊) | 
| 68 |  | slmdcmn 33211 | . . . . . . . . . . . . 13
⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) | 
| 69 | 65, 68 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑊 ∈ CMnd) | 
| 70 |  | vex 3484 | . . . . . . . . . . . . 13
⊢ 𝑒 ∈ V | 
| 71 | 70 | a1i 11 | . . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ∈ V) | 
| 72 |  | simplrl 777 | . . . . . . . . . . . . . 14
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝜑) | 
| 73 |  | simprr 773 | . . . . . . . . . . . . . . . 16
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑒 ∪ {𝑧}) ⊆ 𝐴) | 
| 74 | 73 | unssad 4193 | . . . . . . . . . . . . . . 15
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ⊆ 𝐴) | 
| 75 | 74 | sselda 3983 | . . . . . . . . . . . . . 14
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑘 ∈ 𝐴) | 
| 76 |  | gsumvsca1.c | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑄 ∈ 𝐵) | 
| 77 | 72, 75, 76 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑄 ∈ 𝐵) | 
| 78 | 77 | fmpttd 7135 | . . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑘 ∈ 𝑒 ↦ 𝑄):𝑒⟶𝐵) | 
| 79 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑒 ↦ 𝑄) = (𝑘 ∈ 𝑒 ↦ 𝑄) | 
| 80 |  | simpll 767 | . . . . . . . . . . . . 13
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ∈ Fin) | 
| 81 | 46 | fvexi 6920 | . . . . . . . . . . . . . 14
⊢  0 ∈
V | 
| 82 | 81 | a1i 11 | . . . . . . . . . . . . 13
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 0 ∈ V) | 
| 83 | 79, 80, 77, 82 | fsuppmptdm 9416 | . . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑘 ∈ 𝑒 ↦ 𝑄) finSupp 0 ) | 
| 84 | 67, 46, 69, 71, 78, 83 | gsumcl 19933 | . . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) ∈ 𝐵) | 
| 85 | 73 | unssbd 4194 | . . . . . . . . . . . . 13
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → {𝑧} ⊆ 𝐴) | 
| 86 |  | vex 3484 | . . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V | 
| 87 | 86 | snss 4785 | . . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐴 ↔ {𝑧} ⊆ 𝐴) | 
| 88 | 85, 87 | sylibr 234 | . . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ 𝐴) | 
| 89 | 76 | ralrimiva 3146 | . . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑄 ∈ 𝐵) | 
| 90 | 89 | ad2antrl 728 | . . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ∀𝑘 ∈ 𝐴 𝑄 ∈ 𝐵) | 
| 91 |  | rspcsbela 4438 | . . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝑄 ∈ 𝐵) → ⦋𝑧 / 𝑘⦌𝑄 ∈ 𝐵) | 
| 92 | 88, 90, 91 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ⦋𝑧 / 𝑘⦌𝑄 ∈ 𝐵) | 
| 93 |  | gsumvsca.p | . . . . . . . . . . . 12
⊢  + =
(+g‘𝑊) | 
| 94 | 67, 93, 43, 44, 45 | slmdvsdi 33221 | . . . . . . . . . . 11
⊢ ((𝑊 ∈ SLMod ∧ (𝑃 ∈ (Base‘𝐺) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) ∈ 𝐵 ∧ ⦋𝑧 / 𝑘⦌𝑄 ∈ 𝐵)) → (𝑃 · ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) + ⦋𝑧 / 𝑘⦌𝑄)) = ((𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) | 
| 95 | 65, 66, 84, 92, 94 | syl13anc 1374 | . . . . . . . . . 10
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑃 · ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) + ⦋𝑧 / 𝑘⦌𝑄)) = ((𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) | 
| 96 | 95 | adantr 480 | . . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → (𝑃 · ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) + ⦋𝑧 / 𝑘⦌𝑄)) = ((𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) | 
| 97 |  | nfcsb1v 3923 | . . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝑄 | 
| 98 | 86 | a1i 11 | . . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ V) | 
| 99 |  | simplr 769 | . . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧 ∈ 𝑒) | 
| 100 |  | csbeq1a 3913 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑧 → 𝑄 = ⦋𝑧 / 𝑘⦌𝑄) | 
| 101 | 97, 67, 93, 69, 80, 77, 98, 99, 92, 100 | gsumunsnf 19977 | . . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)) = ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) + ⦋𝑧 / 𝑘⦌𝑄)) | 
| 102 | 101 | oveq2d 7447 | . . . . . . . . . 10
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄))) = (𝑃 · ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) + ⦋𝑧 / 𝑘⦌𝑄))) | 
| 103 | 102 | adantr 480 | . . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄))) = (𝑃 · ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) + ⦋𝑧 / 𝑘⦌𝑄))) | 
| 104 |  | nfcv 2905 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝑃 | 
| 105 |  | nfcv 2905 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑘
· | 
| 106 | 104, 105,
97 | nfov 7461 | . . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝑃 ·
⦋𝑧 / 𝑘⦌𝑄) | 
| 107 | 72, 39 | syl 17 | . . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑊 ∈ SLMod) | 
| 108 | 72, 42 | syl 17 | . . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑃 ∈ (Base‘𝐺)) | 
| 109 | 67, 43, 44, 45 | slmdvscl 33220 | . . . . . . . . . . . . 13
⊢ ((𝑊 ∈ SLMod ∧ 𝑃 ∈ (Base‘𝐺) ∧ 𝑄 ∈ 𝐵) → (𝑃 · 𝑄) ∈ 𝐵) | 
| 110 | 107, 108,
77, 109 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → (𝑃 · 𝑄) ∈ 𝐵) | 
| 111 | 67, 43, 44, 45 | slmdvscl 33220 | . . . . . . . . . . . . 13
⊢ ((𝑊 ∈ SLMod ∧ 𝑃 ∈ (Base‘𝐺) ∧ ⦋𝑧 / 𝑘⦌𝑄 ∈ 𝐵) → (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄) ∈ 𝐵) | 
| 112 | 65, 66, 92, 111 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄) ∈ 𝐵) | 
| 113 | 100 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑧 → (𝑃 · 𝑄) = (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄)) | 
| 114 | 106, 67, 93, 69, 80, 110, 98, 99, 112, 113 | gsumunsnf 19977 | . . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) | 
| 115 | 114 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) | 
| 116 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) | 
| 117 | 116 | oveq1d 7446 | . . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄)) = ((𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) | 
| 118 | 115, 117 | eqtrd 2777 | . . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) | 
| 119 | 96, 103, 118 | 3eqtr4rd 2788 | . . . . . . . 8
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)))) | 
| 120 | 119 | exp31 419 | . . . . . . 7
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)))))) | 
| 121 | 120 | a2d 29 | . . . . . 6
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) → (((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)))))) | 
| 122 | 64, 121 | syl5 34 | . . . . 5
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) → (((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)))))) | 
| 123 | 11, 20, 29, 38, 59, 122 | findcard2s 9205 | . . . 4
⊢ (𝐴 ∈ Fin → ((𝜑 ∧ 𝐴 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄))))) | 
| 124 | 123 | imp 406 | . . 3
⊢ ((𝐴 ∈ Fin ∧ (𝜑 ∧ 𝐴 ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))) | 
| 125 | 2, 124 | mpanr2 704 | . 2
⊢ ((𝐴 ∈ Fin ∧ 𝜑) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))) | 
| 126 | 1, 125 | mpancom 688 | 1
⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))) |