Step | Hyp | Ref
| Expression |
1 | | gsumvsca.a |
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) |
2 | | ssid 3914 |
. . 3
⊢ 𝐴 ⊆ 𝐴 |
3 | | sseq1 3917 |
. . . . . . 7
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
4 | 3 | anbi2d 631 |
. . . . . 6
⊢ (𝑎 = ∅ → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴))) |
5 | | mpteq1 5120 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) |
6 | 5 | oveq2d 7166 |
. . . . . . 7
⊢ (𝑎 = ∅ → (𝑊 Σg
(𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄)))) |
7 | | mpteq1 5120 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (𝑘 ∈ 𝑎 ↦ 𝑄) = (𝑘 ∈ ∅ ↦ 𝑄)) |
8 | 7 | oveq2d 7166 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑊 Σg
(𝑘 ∈ 𝑎 ↦ 𝑄)) = (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄))) |
9 | 8 | oveq2d 7166 |
. . . . . . 7
⊢ (𝑎 = ∅ → (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄)))) |
10 | 6, 9 | eqeq12d 2774 |
. . . . . 6
⊢ (𝑎 = ∅ → ((𝑊 Σg
(𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) ↔ (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄))))) |
11 | 4, 10 | imbi12d 348 |
. . . . 5
⊢ (𝑎 = ∅ → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)))) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄)))))) |
12 | | sseq1 3917 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → (𝑎 ⊆ 𝐴 ↔ 𝑒 ⊆ 𝐴)) |
13 | 12 | anbi2d 631 |
. . . . . 6
⊢ (𝑎 = 𝑒 → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ 𝑒 ⊆ 𝐴))) |
14 | | mpteq1 5120 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) |
15 | 14 | oveq2d 7166 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄)))) |
16 | | mpteq1 5120 |
. . . . . . . . 9
⊢ (𝑎 = 𝑒 → (𝑘 ∈ 𝑎 ↦ 𝑄) = (𝑘 ∈ 𝑒 ↦ 𝑄)) |
17 | 16 | oveq2d 7166 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)) = (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) |
18 | 17 | oveq2d 7166 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) |
19 | 15, 18 | eqeq12d 2774 |
. . . . . 6
⊢ (𝑎 = 𝑒 → ((𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) ↔ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))))) |
20 | 13, 19 | imbi12d 348 |
. . . . 5
⊢ (𝑎 = 𝑒 → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)))) ↔ ((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))))) |
21 | | sseq1 3917 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑎 ⊆ 𝐴 ↔ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) |
22 | 21 | anbi2d 631 |
. . . . . 6
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴))) |
23 | | mpteq1 5120 |
. . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) |
24 | 23 | oveq2d 7166 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄)))) |
25 | | mpteq1 5120 |
. . . . . . . . 9
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑘 ∈ 𝑎 ↦ 𝑄) = (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)) |
26 | 25 | oveq2d 7166 |
. . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)) = (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄))) |
27 | 26 | oveq2d 7166 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)))) |
28 | 24, 27 | eqeq12d 2774 |
. . . . . 6
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → ((𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) ↔ (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄))))) |
29 | 22, 28 | imbi12d 348 |
. . . . 5
⊢ (𝑎 = (𝑒 ∪ {𝑧}) → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)))) ↔ ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)))))) |
30 | | sseq1 3917 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
31 | 30 | anbi2d 631 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ 𝐴 ⊆ 𝐴))) |
32 | | mpteq1 5120 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) |
33 | 32 | oveq2d 7166 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄)))) |
34 | | mpteq1 5120 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑎 ↦ 𝑄) = (𝑘 ∈ 𝐴 ↦ 𝑄)) |
35 | 34 | oveq2d 7166 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)) = (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄))) |
36 | 35 | oveq2d 7166 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))) |
37 | 33, 36 | eqeq12d 2774 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄))) ↔ (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄))))) |
38 | 31, 37 | imbi12d 348 |
. . . . 5
⊢ (𝑎 = 𝐴 → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑎 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑎 ↦ 𝑄)))) ↔ ((𝜑 ∧ 𝐴 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))))) |
39 | | gsumvsca.w |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ SLMod) |
40 | | gsumvsca.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ⊆ (Base‘𝐺)) |
41 | | gsumvsca1.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ 𝐾) |
42 | 40, 41 | sseldd 3893 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ (Base‘𝐺)) |
43 | | gsumvsca.g |
. . . . . . . . . 10
⊢ 𝐺 = (Scalar‘𝑊) |
44 | | gsumvsca.t |
. . . . . . . . . 10
⊢ · = (
·𝑠 ‘𝑊) |
45 | | eqid 2758 |
. . . . . . . . . 10
⊢
(Base‘𝐺) =
(Base‘𝐺) |
46 | | gsumvsca.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑊) |
47 | 43, 44, 45, 46 | slmdvs0 31004 |
. . . . . . . . 9
⊢ ((𝑊 ∈ SLMod ∧ 𝑃 ∈ (Base‘𝐺)) → (𝑃 · 0 ) = 0 ) |
48 | 39, 42, 47 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 · 0 ) = 0 ) |
49 | 48 | eqcomd 2764 |
. . . . . . 7
⊢ (𝜑 → 0 = (𝑃 · 0 )) |
50 | | mpt0 6473 |
. . . . . . . . 9
⊢ (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄)) = ∅ |
51 | 50 | oveq2i 7161 |
. . . . . . . 8
⊢ (𝑊 Σg
(𝑘 ∈ ∅ ↦
(𝑃 · 𝑄))) = (𝑊 Σg
∅) |
52 | 46 | gsum0 17960 |
. . . . . . . 8
⊢ (𝑊 Σg
∅) = 0 |
53 | 51, 52 | eqtri 2781 |
. . . . . . 7
⊢ (𝑊 Σg
(𝑘 ∈ ∅ ↦
(𝑃 · 𝑄))) = 0 |
54 | | mpt0 6473 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ∅ ↦ 𝑄) = ∅ |
55 | 54 | oveq2i 7161 |
. . . . . . . . 9
⊢ (𝑊 Σg
(𝑘 ∈ ∅ ↦
𝑄)) = (𝑊 Σg
∅) |
56 | 55, 52 | eqtri 2781 |
. . . . . . . 8
⊢ (𝑊 Σg
(𝑘 ∈ ∅ ↦
𝑄)) = 0 |
57 | 56 | oveq2i 7161 |
. . . . . . 7
⊢ (𝑃 · (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄))) = (𝑃 · 0 ) |
58 | 49, 53, 57 | 3eqtr4g 2818 |
. . . . . 6
⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄)))) |
59 | 58 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ ∅ ↦ 𝑄)))) |
60 | | ssun1 4077 |
. . . . . . . . 9
⊢ 𝑒 ⊆ (𝑒 ∪ {𝑧}) |
61 | | sstr2 3899 |
. . . . . . . . 9
⊢ (𝑒 ⊆ (𝑒 ∪ {𝑧}) → ((𝑒 ∪ {𝑧}) ⊆ 𝐴 → 𝑒 ⊆ 𝐴)) |
62 | 60, 61 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑒 ∪ {𝑧}) ⊆ 𝐴 → 𝑒 ⊆ 𝐴) |
63 | 62 | anim2i 619 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝜑 ∧ 𝑒 ⊆ 𝐴)) |
64 | 63 | imim1i 63 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))))) |
65 | 39 | ad2antrl 727 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑊 ∈ SLMod) |
66 | 42 | ad2antrl 727 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑃 ∈ (Base‘𝐺)) |
67 | | gsumvsca.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑊) |
68 | | slmdcmn 30984 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) |
69 | 65, 68 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑊 ∈ CMnd) |
70 | | vex 3413 |
. . . . . . . . . . . . 13
⊢ 𝑒 ∈ V |
71 | 70 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ∈ V) |
72 | | simplrl 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝜑) |
73 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑒 ∪ {𝑧}) ⊆ 𝐴) |
74 | 73 | unssad 4092 |
. . . . . . . . . . . . . . 15
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ⊆ 𝐴) |
75 | 74 | sselda 3892 |
. . . . . . . . . . . . . 14
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑘 ∈ 𝐴) |
76 | | gsumvsca1.c |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑄 ∈ 𝐵) |
77 | 72, 75, 76 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑄 ∈ 𝐵) |
78 | 77 | fmpttd 6870 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑘 ∈ 𝑒 ↦ 𝑄):𝑒⟶𝐵) |
79 | | eqid 2758 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑒 ↦ 𝑄) = (𝑘 ∈ 𝑒 ↦ 𝑄) |
80 | | simpll 766 |
. . . . . . . . . . . . 13
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ∈ Fin) |
81 | 46 | fvexi 6672 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
82 | 81 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 0 ∈ V) |
83 | 79, 80, 77, 82 | fsuppmptdm 8877 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑘 ∈ 𝑒 ↦ 𝑄) finSupp 0 ) |
84 | 67, 46, 69, 71, 78, 83 | gsumcl 19103 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) ∈ 𝐵) |
85 | 73 | unssbd 4093 |
. . . . . . . . . . . . 13
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → {𝑧} ⊆ 𝐴) |
86 | | vex 3413 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
87 | 86 | snss 4676 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐴 ↔ {𝑧} ⊆ 𝐴) |
88 | 85, 87 | sylibr 237 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ 𝐴) |
89 | 76 | ralrimiva 3113 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑄 ∈ 𝐵) |
90 | 89 | ad2antrl 727 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ∀𝑘 ∈ 𝐴 𝑄 ∈ 𝐵) |
91 | | rspcsbela 4332 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝑄 ∈ 𝐵) → ⦋𝑧 / 𝑘⦌𝑄 ∈ 𝐵) |
92 | 88, 90, 91 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ⦋𝑧 / 𝑘⦌𝑄 ∈ 𝐵) |
93 | | gsumvsca.p |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝑊) |
94 | 67, 93, 43, 44, 45 | slmdvsdi 30994 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ SLMod ∧ (𝑃 ∈ (Base‘𝐺) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) ∈ 𝐵 ∧ ⦋𝑧 / 𝑘⦌𝑄 ∈ 𝐵)) → (𝑃 · ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) + ⦋𝑧 / 𝑘⦌𝑄)) = ((𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) |
95 | 65, 66, 84, 92, 94 | syl13anc 1369 |
. . . . . . . . . 10
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑃 · ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) + ⦋𝑧 / 𝑘⦌𝑄)) = ((𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) |
96 | 95 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → (𝑃 · ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) + ⦋𝑧 / 𝑘⦌𝑄)) = ((𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) |
97 | | nfcsb1v 3829 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝑄 |
98 | 86 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ V) |
99 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧 ∈ 𝑒) |
100 | | csbeq1a 3819 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑧 → 𝑄 = ⦋𝑧 / 𝑘⦌𝑄) |
101 | 97, 67, 93, 69, 80, 77, 98, 99, 92, 100 | gsumunsnf 19147 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)) = ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) + ⦋𝑧 / 𝑘⦌𝑄)) |
102 | 101 | oveq2d 7166 |
. . . . . . . . . 10
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄))) = (𝑃 · ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) + ⦋𝑧 / 𝑘⦌𝑄))) |
103 | 102 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄))) = (𝑃 · ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)) + ⦋𝑧 / 𝑘⦌𝑄))) |
104 | | nfcv 2919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝑃 |
105 | | nfcv 2919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘
· |
106 | 104, 105,
97 | nfov 7180 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝑃 ·
⦋𝑧 / 𝑘⦌𝑄) |
107 | 72, 39 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑊 ∈ SLMod) |
108 | 72, 42 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → 𝑃 ∈ (Base‘𝐺)) |
109 | 67, 43, 44, 45 | slmdvscl 30993 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ SLMod ∧ 𝑃 ∈ (Base‘𝐺) ∧ 𝑄 ∈ 𝐵) → (𝑃 · 𝑄) ∈ 𝐵) |
110 | 107, 108,
77, 109 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘 ∈ 𝑒) → (𝑃 · 𝑄) ∈ 𝐵) |
111 | 67, 43, 44, 45 | slmdvscl 30993 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ SLMod ∧ 𝑃 ∈ (Base‘𝐺) ∧ ⦋𝑧 / 𝑘⦌𝑄 ∈ 𝐵) → (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄) ∈ 𝐵) |
112 | 65, 66, 92, 111 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄) ∈ 𝐵) |
113 | 100 | oveq2d 7166 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑧 → (𝑃 · 𝑄) = (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄)) |
114 | 106, 67, 93, 69, 80, 110, 98, 99, 112, 113 | gsumunsnf 19147 |
. . . . . . . . . . 11
⊢ (((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) |
115 | 114 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) |
116 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) |
117 | 116 | oveq1d 7165 |
. . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄)) = ((𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) |
118 | 115, 117 | eqtrd 2793 |
. . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) + (𝑃 ·
⦋𝑧 / 𝑘⦌𝑄))) |
119 | 96, 103, 118 | 3eqtr4rd 2804 |
. . . . . . . 8
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)))) |
120 | 119 | exp31 423 |
. . . . . . 7
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → ((𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄))) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)))))) |
121 | 120 | a2d 29 |
. . . . . 6
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) → (((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)))))) |
122 | 64, 121 | syl5 34 |
. . . . 5
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑒) → (((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝑒 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝑒 ↦ 𝑄)))) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑄)))))) |
123 | 11, 20, 29, 38, 59, 122 | findcard2s 8736 |
. . . 4
⊢ (𝐴 ∈ Fin → ((𝜑 ∧ 𝐴 ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄))))) |
124 | 123 | imp 410 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ (𝜑 ∧ 𝐴 ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))) |
125 | 2, 124 | mpanr2 703 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝜑) → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))) |
126 | 1, 125 | mpancom 687 |
1
⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))) |