Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdsn0 Structured version   Visualization version   GIF version

Theorem slmdsn0 33137
Description: The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.)
Hypotheses
Ref Expression
slmdsn0.f 𝐹 = (Scalar‘𝑊)
slmdsn0.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
slmdsn0 (𝑊 ∈ SLMod → 𝐵 ≠ ∅)

Proof of Theorem slmdsn0
StepHypRef Expression
1 slmdsn0.f . . 3 𝐹 = (Scalar‘𝑊)
21slmdsrg 33133 . 2 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
3 srgmnd 20075 . 2 (𝐹 ∈ SRing → 𝐹 ∈ Mnd)
4 slmdsn0.b . . 3 𝐵 = (Base‘𝐹)
54mndbn0 18653 . 2 (𝐹 ∈ Mnd → 𝐵 ≠ ∅)
62, 3, 53syl 18 1 (𝑊 ∈ SLMod → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  c0 4292  cfv 6499  Basecbs 17155  Scalarcsca 17199  Mndcmnd 18637  SRingcsrg 20071  SLModcslmd 33126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-riota 7326  df-ov 7372  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-cmn 19688  df-srg 20072  df-slmd 33127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator