Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdsn0 Structured version   Visualization version   GIF version

Theorem slmdsn0 33200
Description: The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.)
Hypotheses
Ref Expression
slmdsn0.f 𝐹 = (Scalar‘𝑊)
slmdsn0.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
slmdsn0 (𝑊 ∈ SLMod → 𝐵 ≠ ∅)

Proof of Theorem slmdsn0
StepHypRef Expression
1 slmdsn0.f . . 3 𝐹 = (Scalar‘𝑊)
21slmdsrg 33196 . 2 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
3 srgmnd 20208 . 2 (𝐹 ∈ SRing → 𝐹 ∈ Mnd)
4 slmdsn0.b . . 3 𝐵 = (Base‘𝐹)
54mndbn0 18776 . 2 (𝐹 ∈ Mnd → 𝐵 ≠ ∅)
62, 3, 53syl 18 1 (𝑊 ∈ SLMod → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wne 2938  c0 4339  cfv 6563  Basecbs 17245  Scalarcsca 17301  Mndcmnd 18760  SRingcsrg 20204  SLModcslmd 33189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-cmn 19815  df-srg 20205  df-slmd 33190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator