Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdsn0 Structured version   Visualization version   GIF version

Theorem slmdsn0 30870
Description: The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.)
Hypotheses
Ref Expression
slmdsn0.f 𝐹 = (Scalar‘𝑊)
slmdsn0.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
slmdsn0 (𝑊 ∈ SLMod → 𝐵 ≠ ∅)

Proof of Theorem slmdsn0
StepHypRef Expression
1 slmdsn0.f . . 3 𝐹 = (Scalar‘𝑊)
21slmdsrg 30866 . 2 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
3 srgmnd 19250 . 2 (𝐹 ∈ SRing → 𝐹 ∈ Mnd)
4 slmdsn0.b . . 3 𝐵 = (Base‘𝐹)
54mndbn0 17918 . 2 (𝐹 ∈ Mnd → 𝐵 ≠ ∅)
62, 3, 53syl 18 1 (𝑊 ∈ SLMod → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2114  wne 3011  c0 4265  cfv 6334  Basecbs 16474  Scalarcsca 16559  Mndcmnd 17902  SRingcsrg 19246  SLModcslmd 30859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-iota 6293  df-fun 6336  df-fv 6342  df-riota 7098  df-ov 7143  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-cmn 18899  df-srg 19247  df-slmd 30860
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator