Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdsn0 Structured version   Visualization version   GIF version

Theorem slmdsn0 33213
Description: The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.)
Hypotheses
Ref Expression
slmdsn0.f 𝐹 = (Scalar‘𝑊)
slmdsn0.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
slmdsn0 (𝑊 ∈ SLMod → 𝐵 ≠ ∅)

Proof of Theorem slmdsn0
StepHypRef Expression
1 slmdsn0.f . . 3 𝐹 = (Scalar‘𝑊)
21slmdsrg 33209 . 2 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
3 srgmnd 20155 . 2 (𝐹 ∈ SRing → 𝐹 ∈ Mnd)
4 slmdsn0.b . . 3 𝐵 = (Base‘𝐹)
54mndbn0 18733 . 2 (𝐹 ∈ Mnd → 𝐵 ≠ ∅)
62, 3, 53syl 18 1 (𝑊 ∈ SLMod → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2933  c0 4313  cfv 6536  Basecbs 17233  Scalarcsca 17279  Mndcmnd 18717  SRingcsrg 20151  SLModcslmd 33202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-riota 7367  df-ov 7413  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-cmn 19768  df-srg 20152  df-slmd 33203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator