Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdsn0 | Structured version Visualization version GIF version |
Description: The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.) |
Ref | Expression |
---|---|
slmdsn0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmdsn0.b | ⊢ 𝐵 = (Base‘𝐹) |
Ref | Expression |
---|---|
slmdsn0 | ⊢ (𝑊 ∈ SLMod → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdsn0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | slmdsrg 31460 | . 2 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
3 | srgmnd 19745 | . 2 ⊢ (𝐹 ∈ SRing → 𝐹 ∈ Mnd) | |
4 | slmdsn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
5 | 4 | mndbn0 18401 | . 2 ⊢ (𝐹 ∈ Mnd → 𝐵 ≠ ∅) |
6 | 2, 3, 5 | 3syl 18 | 1 ⊢ (𝑊 ∈ SLMod → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 ‘cfv 6433 Basecbs 16912 Scalarcsca 16965 Mndcmnd 18385 SRingcsrg 19741 SLModcslmd 31453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-cmn 19388 df-srg 19742 df-slmd 31454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |