Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdsn0 | Structured version Visualization version GIF version |
Description: The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.) |
Ref | Expression |
---|---|
slmdsn0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmdsn0.b | ⊢ 𝐵 = (Base‘𝐹) |
Ref | Expression |
---|---|
slmdsn0 | ⊢ (𝑊 ∈ SLMod → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdsn0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | slmdsrg 31688 | . 2 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
3 | srgmnd 19832 | . 2 ⊢ (𝐹 ∈ SRing → 𝐹 ∈ Mnd) | |
4 | slmdsn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
5 | 4 | mndbn0 18490 | . 2 ⊢ (𝐹 ∈ Mnd → 𝐵 ≠ ∅) |
6 | 2, 3, 5 | 3syl 18 | 1 ⊢ (𝑊 ∈ SLMod → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∅c0 4268 ‘cfv 6473 Basecbs 17001 Scalarcsca 17054 Mndcmnd 18474 SRingcsrg 19828 SLModcslmd 31681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6425 df-fun 6475 df-fv 6481 df-riota 7286 df-ov 7332 df-0g 17241 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-cmn 19475 df-srg 19829 df-slmd 31682 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |