| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdsn0 | Structured version Visualization version GIF version | ||
| Description: The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.) |
| Ref | Expression |
|---|---|
| slmdsn0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| slmdsn0.b | ⊢ 𝐵 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| slmdsn0 | ⊢ (𝑊 ∈ SLMod → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slmdsn0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | slmdsrg 33160 | . 2 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
| 3 | srgmnd 20099 | . 2 ⊢ (𝐹 ∈ SRing → 𝐹 ∈ Mnd) | |
| 4 | slmdsn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
| 5 | 4 | mndbn0 18677 | . 2 ⊢ (𝐹 ∈ Mnd → 𝐵 ≠ ∅) |
| 6 | 2, 3, 5 | 3syl 18 | 1 ⊢ (𝑊 ∈ SLMod → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 ‘cfv 6511 Basecbs 17179 Scalarcsca 17223 Mndcmnd 18661 SRingcsrg 20095 SLModcslmd 33153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-cmn 19712 df-srg 20096 df-slmd 33154 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |