![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdvs0 | Structured version Visualization version GIF version |
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 28436 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdvs0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmdvs0.s | ⊢ · = ( ·𝑠 ‘𝑊) |
slmdvs0.k | ⊢ 𝐾 = (Base‘𝐹) |
slmdvs0.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmdvs0 | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdvs0.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | slmdsrg 30305 | . . . 4 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
3 | slmdvs0.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
4 | eqid 2825 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
5 | eqid 2825 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
6 | 3, 4, 5 | srgrz 18880 | . . . 4 ⊢ ((𝐹 ∈ SRing ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
7 | 2, 6 | sylan 577 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
8 | 7 | oveq1d 6920 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = ((0g‘𝐹) · 0 )) |
9 | simpl 476 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 𝑊 ∈ SLMod) | |
10 | simpr 479 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
11 | 2 | adantr 474 | . . . . 5 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 𝐹 ∈ SRing) |
12 | 3, 5 | srg0cl 18873 | . . . . 5 ⊢ (𝐹 ∈ SRing → (0g‘𝐹) ∈ 𝐾) |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (0g‘𝐹) ∈ 𝐾) |
14 | eqid 2825 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
15 | slmdvs0.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
16 | 14, 15 | slmd0vcl 30319 | . . . . 5 ⊢ (𝑊 ∈ SLMod → 0 ∈ (Base‘𝑊)) |
17 | 16 | adantr 474 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 0 ∈ (Base‘𝑊)) |
18 | slmdvs0.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
19 | 14, 1, 18, 3, 4 | slmdvsass 30315 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ (𝑋 ∈ 𝐾 ∧ (0g‘𝐹) ∈ 𝐾 ∧ 0 ∈ (Base‘𝑊))) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
20 | 9, 10, 13, 17, 19 | syl13anc 1497 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
21 | 14, 1, 18, 5, 15 | slmd0vs 30322 | . . . . 5 ⊢ ((𝑊 ∈ SLMod ∧ 0 ∈ (Base‘𝑊)) → ((0g‘𝐹) · 0 ) = 0 ) |
22 | 17, 21 | syldan 587 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((0g‘𝐹) · 0 ) = 0 ) |
23 | 22 | oveq2d 6921 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · ((0g‘𝐹) · 0 )) = (𝑋 · 0 )) |
24 | 20, 23 | eqtrd 2861 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · 0 )) |
25 | 8, 24, 22 | 3eqtr3d 2869 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ‘cfv 6123 (class class class)co 6905 Basecbs 16222 .rcmulr 16306 Scalarcsca 16308 ·𝑠 cvsca 16309 0gc0g 16453 SRingcsrg 18859 SLModcslmd 30298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-iota 6086 df-fun 6125 df-fv 6131 df-riota 6866 df-ov 6908 df-0g 16455 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-cmn 18548 df-srg 18860 df-slmd 30299 |
This theorem is referenced by: gsumvsca1 30327 |
Copyright terms: Public domain | W3C validator |