Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvs0 Structured version   Visualization version   GIF version

Theorem slmdvs0 33214
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 31053 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvs0.f 𝐹 = (Scalar‘𝑊)
slmdvs0.s · = ( ·𝑠𝑊)
slmdvs0.k 𝐾 = (Base‘𝐹)
slmdvs0.z 0 = (0g𝑊)
Assertion
Ref Expression
slmdvs0 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )

Proof of Theorem slmdvs0
StepHypRef Expression
1 slmdvs0.f . . . . 5 𝐹 = (Scalar‘𝑊)
21slmdsrg 33196 . . . 4 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
3 slmdvs0.k . . . . 5 𝐾 = (Base‘𝐹)
4 eqid 2735 . . . . 5 (.r𝐹) = (.r𝐹)
5 eqid 2735 . . . . 5 (0g𝐹) = (0g𝐹)
63, 4, 5srgrz 20225 . . . 4 ((𝐹 ∈ SRing ∧ 𝑋𝐾) → (𝑋(.r𝐹)(0g𝐹)) = (0g𝐹))
72, 6sylan 580 . . 3 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (𝑋(.r𝐹)(0g𝐹)) = (0g𝐹))
87oveq1d 7446 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = ((0g𝐹) · 0 ))
9 simpl 482 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → 𝑊 ∈ SLMod)
10 simpr 484 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → 𝑋𝐾)
112adantr 480 . . . . 5 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → 𝐹 ∈ SRing)
123, 5srg0cl 20218 . . . . 5 (𝐹 ∈ SRing → (0g𝐹) ∈ 𝐾)
1311, 12syl 17 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (0g𝐹) ∈ 𝐾)
14 eqid 2735 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
15 slmdvs0.z . . . . . 6 0 = (0g𝑊)
1614, 15slmd0vcl 33210 . . . . 5 (𝑊 ∈ SLMod → 0 ∈ (Base‘𝑊))
1716adantr 480 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → 0 ∈ (Base‘𝑊))
18 slmdvs0.s . . . . 5 · = ( ·𝑠𝑊)
1914, 1, 18, 3, 4slmdvsass 33206 . . . 4 ((𝑊 ∈ SLMod ∧ (𝑋𝐾 ∧ (0g𝐹) ∈ 𝐾0 ∈ (Base‘𝑊))) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · ((0g𝐹) · 0 )))
209, 10, 13, 17, 19syl13anc 1371 . . 3 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · ((0g𝐹) · 0 )))
2114, 1, 18, 5, 15slmd0vs 33213 . . . . 5 ((𝑊 ∈ SLMod ∧ 0 ∈ (Base‘𝑊)) → ((0g𝐹) · 0 ) = 0 )
2217, 21syldan 591 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → ((0g𝐹) · 0 ) = 0 )
2322oveq2d 7447 . . 3 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (𝑋 · ((0g𝐹) · 0 )) = (𝑋 · 0 ))
2420, 23eqtrd 2775 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · 0 ))
258, 24, 223eqtr3d 2783 1 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  SRingcsrg 20204  SLModcslmd 33189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-cmn 19815  df-srg 20205  df-slmd 33190
This theorem is referenced by:  gsumvsca1  33215
  Copyright terms: Public domain W3C validator