Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdvs0 | Structured version Visualization version GIF version |
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 28896 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdvs0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmdvs0.s | ⊢ · = ( ·𝑠 ‘𝑊) |
slmdvs0.k | ⊢ 𝐾 = (Base‘𝐹) |
slmdvs0.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmdvs0 | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdvs0.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | slmdsrg 30976 | . . . 4 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
3 | slmdvs0.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
4 | eqid 2759 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
5 | eqid 2759 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
6 | 3, 4, 5 | srgrz 19334 | . . . 4 ⊢ ((𝐹 ∈ SRing ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
7 | 2, 6 | sylan 584 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
8 | 7 | oveq1d 7163 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = ((0g‘𝐹) · 0 )) |
9 | simpl 487 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 𝑊 ∈ SLMod) | |
10 | simpr 489 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
11 | 2 | adantr 485 | . . . . 5 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 𝐹 ∈ SRing) |
12 | 3, 5 | srg0cl 19327 | . . . . 5 ⊢ (𝐹 ∈ SRing → (0g‘𝐹) ∈ 𝐾) |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (0g‘𝐹) ∈ 𝐾) |
14 | eqid 2759 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
15 | slmdvs0.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
16 | 14, 15 | slmd0vcl 30990 | . . . . 5 ⊢ (𝑊 ∈ SLMod → 0 ∈ (Base‘𝑊)) |
17 | 16 | adantr 485 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 0 ∈ (Base‘𝑊)) |
18 | slmdvs0.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
19 | 14, 1, 18, 3, 4 | slmdvsass 30986 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ (𝑋 ∈ 𝐾 ∧ (0g‘𝐹) ∈ 𝐾 ∧ 0 ∈ (Base‘𝑊))) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
20 | 9, 10, 13, 17, 19 | syl13anc 1370 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
21 | 14, 1, 18, 5, 15 | slmd0vs 30993 | . . . . 5 ⊢ ((𝑊 ∈ SLMod ∧ 0 ∈ (Base‘𝑊)) → ((0g‘𝐹) · 0 ) = 0 ) |
22 | 17, 21 | syldan 595 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((0g‘𝐹) · 0 ) = 0 ) |
23 | 22 | oveq2d 7164 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · ((0g‘𝐹) · 0 )) = (𝑋 · 0 )) |
24 | 20, 23 | eqtrd 2794 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · 0 )) |
25 | 8, 24, 22 | 3eqtr3d 2802 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ‘cfv 6333 (class class class)co 7148 Basecbs 16531 .rcmulr 16614 Scalarcsca 16616 ·𝑠 cvsca 16617 0gc0g 16761 SRingcsrg 19313 SLModcslmd 30969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4419 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5428 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-iota 6292 df-fun 6335 df-fv 6341 df-riota 7106 df-ov 7151 df-0g 16763 df-mgm 17908 df-sgrp 17957 df-mnd 17968 df-cmn 18965 df-srg 19314 df-slmd 30970 |
This theorem is referenced by: gsumvsca1 30995 |
Copyright terms: Public domain | W3C validator |