Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvs0 Structured version   Visualization version   GIF version

Theorem slmdvs0 30903
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 28807 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvs0.f 𝐹 = (Scalar‘𝑊)
slmdvs0.s · = ( ·𝑠𝑊)
slmdvs0.k 𝐾 = (Base‘𝐹)
slmdvs0.z 0 = (0g𝑊)
Assertion
Ref Expression
slmdvs0 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )

Proof of Theorem slmdvs0
StepHypRef Expression
1 slmdvs0.f . . . . 5 𝐹 = (Scalar‘𝑊)
21slmdsrg 30885 . . . 4 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
3 slmdvs0.k . . . . 5 𝐾 = (Base‘𝐹)
4 eqid 2798 . . . . 5 (.r𝐹) = (.r𝐹)
5 eqid 2798 . . . . 5 (0g𝐹) = (0g𝐹)
63, 4, 5srgrz 19269 . . . 4 ((𝐹 ∈ SRing ∧ 𝑋𝐾) → (𝑋(.r𝐹)(0g𝐹)) = (0g𝐹))
72, 6sylan 583 . . 3 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (𝑋(.r𝐹)(0g𝐹)) = (0g𝐹))
87oveq1d 7150 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = ((0g𝐹) · 0 ))
9 simpl 486 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → 𝑊 ∈ SLMod)
10 simpr 488 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → 𝑋𝐾)
112adantr 484 . . . . 5 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → 𝐹 ∈ SRing)
123, 5srg0cl 19262 . . . . 5 (𝐹 ∈ SRing → (0g𝐹) ∈ 𝐾)
1311, 12syl 17 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (0g𝐹) ∈ 𝐾)
14 eqid 2798 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
15 slmdvs0.z . . . . . 6 0 = (0g𝑊)
1614, 15slmd0vcl 30899 . . . . 5 (𝑊 ∈ SLMod → 0 ∈ (Base‘𝑊))
1716adantr 484 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → 0 ∈ (Base‘𝑊))
18 slmdvs0.s . . . . 5 · = ( ·𝑠𝑊)
1914, 1, 18, 3, 4slmdvsass 30895 . . . 4 ((𝑊 ∈ SLMod ∧ (𝑋𝐾 ∧ (0g𝐹) ∈ 𝐾0 ∈ (Base‘𝑊))) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · ((0g𝐹) · 0 )))
209, 10, 13, 17, 19syl13anc 1369 . . 3 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · ((0g𝐹) · 0 )))
2114, 1, 18, 5, 15slmd0vs 30902 . . . . 5 ((𝑊 ∈ SLMod ∧ 0 ∈ (Base‘𝑊)) → ((0g𝐹) · 0 ) = 0 )
2217, 21syldan 594 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → ((0g𝐹) · 0 ) = 0 )
2322oveq2d 7151 . . 3 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (𝑋 · ((0g𝐹) · 0 )) = (𝑋 · 0 ))
2420, 23eqtrd 2833 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · 0 ))
258, 24, 223eqtr3d 2841 1 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  SRingcsrg 19248  SLModcslmd 30878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-riota 7093  df-ov 7138  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-cmn 18900  df-srg 19249  df-slmd 30879
This theorem is referenced by:  gsumvsca1  30904
  Copyright terms: Public domain W3C validator