Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvs0 Structured version   Visualization version   GIF version

Theorem slmdvs0 30855
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 28803 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvs0.f 𝐹 = (Scalar‘𝑊)
slmdvs0.s · = ( ·𝑠𝑊)
slmdvs0.k 𝐾 = (Base‘𝐹)
slmdvs0.z 0 = (0g𝑊)
Assertion
Ref Expression
slmdvs0 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )

Proof of Theorem slmdvs0
StepHypRef Expression
1 slmdvs0.f . . . . 5 𝐹 = (Scalar‘𝑊)
21slmdsrg 30837 . . . 4 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
3 slmdvs0.k . . . . 5 𝐾 = (Base‘𝐹)
4 eqid 2823 . . . . 5 (.r𝐹) = (.r𝐹)
5 eqid 2823 . . . . 5 (0g𝐹) = (0g𝐹)
63, 4, 5srgrz 19278 . . . 4 ((𝐹 ∈ SRing ∧ 𝑋𝐾) → (𝑋(.r𝐹)(0g𝐹)) = (0g𝐹))
72, 6sylan 582 . . 3 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (𝑋(.r𝐹)(0g𝐹)) = (0g𝐹))
87oveq1d 7173 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = ((0g𝐹) · 0 ))
9 simpl 485 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → 𝑊 ∈ SLMod)
10 simpr 487 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → 𝑋𝐾)
112adantr 483 . . . . 5 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → 𝐹 ∈ SRing)
123, 5srg0cl 19271 . . . . 5 (𝐹 ∈ SRing → (0g𝐹) ∈ 𝐾)
1311, 12syl 17 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (0g𝐹) ∈ 𝐾)
14 eqid 2823 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
15 slmdvs0.z . . . . . 6 0 = (0g𝑊)
1614, 15slmd0vcl 30851 . . . . 5 (𝑊 ∈ SLMod → 0 ∈ (Base‘𝑊))
1716adantr 483 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → 0 ∈ (Base‘𝑊))
18 slmdvs0.s . . . . 5 · = ( ·𝑠𝑊)
1914, 1, 18, 3, 4slmdvsass 30847 . . . 4 ((𝑊 ∈ SLMod ∧ (𝑋𝐾 ∧ (0g𝐹) ∈ 𝐾0 ∈ (Base‘𝑊))) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · ((0g𝐹) · 0 )))
209, 10, 13, 17, 19syl13anc 1368 . . 3 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · ((0g𝐹) · 0 )))
2114, 1, 18, 5, 15slmd0vs 30854 . . . . 5 ((𝑊 ∈ SLMod ∧ 0 ∈ (Base‘𝑊)) → ((0g𝐹) · 0 ) = 0 )
2217, 21syldan 593 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → ((0g𝐹) · 0 ) = 0 )
2322oveq2d 7174 . . 3 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (𝑋 · ((0g𝐹) · 0 )) = (𝑋 · 0 ))
2420, 23eqtrd 2858 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · 0 ))
258, 24, 223eqtr3d 2866 1 ((𝑊 ∈ SLMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  Basecbs 16485  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  SRingcsrg 19257  SLModcslmd 30830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-riota 7116  df-ov 7161  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-cmn 18910  df-srg 19258  df-slmd 30831
This theorem is referenced by:  gsumvsca1  30856
  Copyright terms: Public domain W3C validator