| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdvs0 | Structured version Visualization version GIF version | ||
| Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 30960 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| slmdvs0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| slmdvs0.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| slmdvs0.k | ⊢ 𝐾 = (Base‘𝐹) |
| slmdvs0.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| slmdvs0 | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slmdvs0.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | slmdsrg 33167 | . . . 4 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
| 3 | slmdvs0.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 6 | 3, 4, 5 | srgrz 20123 | . . . 4 ⊢ ((𝐹 ∈ SRing ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
| 7 | 2, 6 | sylan 580 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
| 8 | 7 | oveq1d 7405 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = ((0g‘𝐹) · 0 )) |
| 9 | simpl 482 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 𝑊 ∈ SLMod) | |
| 10 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
| 11 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 𝐹 ∈ SRing) |
| 12 | 3, 5 | srg0cl 20116 | . . . . 5 ⊢ (𝐹 ∈ SRing → (0g‘𝐹) ∈ 𝐾) |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (0g‘𝐹) ∈ 𝐾) |
| 14 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | slmdvs0.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 16 | 14, 15 | slmd0vcl 33181 | . . . . 5 ⊢ (𝑊 ∈ SLMod → 0 ∈ (Base‘𝑊)) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 0 ∈ (Base‘𝑊)) |
| 18 | slmdvs0.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 19 | 14, 1, 18, 3, 4 | slmdvsass 33177 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ (𝑋 ∈ 𝐾 ∧ (0g‘𝐹) ∈ 𝐾 ∧ 0 ∈ (Base‘𝑊))) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
| 20 | 9, 10, 13, 17, 19 | syl13anc 1374 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
| 21 | 14, 1, 18, 5, 15 | slmd0vs 33184 | . . . . 5 ⊢ ((𝑊 ∈ SLMod ∧ 0 ∈ (Base‘𝑊)) → ((0g‘𝐹) · 0 ) = 0 ) |
| 22 | 17, 21 | syldan 591 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((0g‘𝐹) · 0 ) = 0 ) |
| 23 | 22 | oveq2d 7406 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · ((0g‘𝐹) · 0 )) = (𝑋 · 0 )) |
| 24 | 20, 23 | eqtrd 2765 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · 0 )) |
| 25 | 8, 24, 22 | 3eqtr3d 2773 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 SRingcsrg 20102 SLModcslmd 33160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-cmn 19719 df-srg 20103 df-slmd 33161 |
| This theorem is referenced by: gsumvsca1 33186 |
| Copyright terms: Public domain | W3C validator |