Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmd0cl Structured version   Visualization version   GIF version

Theorem slmd0cl 33224
Description: The ring zero in a semimodule belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmd0cl.f 𝐹 = (Scalar‘𝑊)
slmd0cl.k 𝐾 = (Base‘𝐹)
slmd0cl.z 0 = (0g𝐹)
Assertion
Ref Expression
slmd0cl (𝑊 ∈ SLMod → 0𝐾)

Proof of Theorem slmd0cl
StepHypRef Expression
1 slmd0cl.f . . 3 𝐹 = (Scalar‘𝑊)
21slmdsrg 33213 . 2 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
3 slmd0cl.k . . 3 𝐾 = (Base‘𝐹)
4 slmd0cl.z . . 3 0 = (0g𝐹)
53, 4srg0cl 20197 . 2 (𝐹 ∈ SRing → 0𝐾)
62, 5syl 17 1 (𝑊 ∈ SLMod → 0𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6561  Basecbs 17247  Scalarcsca 17300  0gc0g 17484  SRingcsrg 20183  SLModcslmd 33206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-riota 7388  df-ov 7434  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-cmn 19800  df-srg 20184  df-slmd 33207
This theorem is referenced by:  slmd0vs  33230
  Copyright terms: Public domain W3C validator