| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0cl | Structured version Visualization version GIF version | ||
| Description: The ring zero in a semimodule belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| slmd0cl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| slmd0cl.k | ⊢ 𝐾 = (Base‘𝐹) |
| slmd0cl.z | ⊢ 0 = (0g‘𝐹) |
| Ref | Expression |
|---|---|
| slmd0cl | ⊢ (𝑊 ∈ SLMod → 0 ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slmd0cl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | slmdsrg 33176 | . 2 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
| 3 | slmd0cl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | slmd0cl.z | . . 3 ⊢ 0 = (0g‘𝐹) | |
| 5 | 3, 4 | srg0cl 20118 | . 2 ⊢ (𝐹 ∈ SRing → 0 ∈ 𝐾) |
| 6 | 2, 5 | syl 17 | 1 ⊢ (𝑊 ∈ SLMod → 0 ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 Scalarcsca 17164 0gc0g 17343 SRingcsrg 20104 SLModcslmd 33169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-cmn 19694 df-srg 20105 df-slmd 33170 |
| This theorem is referenced by: slmd0vs 33193 |
| Copyright terms: Public domain | W3C validator |