Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmd0cl Structured version   Visualization version   GIF version

Theorem slmd0cl 33220
Description: The ring zero in a semimodule belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmd0cl.f 𝐹 = (Scalar‘𝑊)
slmd0cl.k 𝐾 = (Base‘𝐹)
slmd0cl.z 0 = (0g𝐹)
Assertion
Ref Expression
slmd0cl (𝑊 ∈ SLMod → 0𝐾)

Proof of Theorem slmd0cl
StepHypRef Expression
1 slmd0cl.f . . 3 𝐹 = (Scalar‘𝑊)
21slmdsrg 33209 . 2 (𝑊 ∈ SLMod → 𝐹 ∈ SRing)
3 slmd0cl.k . . 3 𝐾 = (Base‘𝐹)
4 slmd0cl.z . . 3 0 = (0g𝐹)
53, 4srg0cl 20165 . 2 (𝐹 ∈ SRing → 0𝐾)
62, 5syl 17 1 (𝑊 ∈ SLMod → 0𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6536  Basecbs 17233  Scalarcsca 17279  0gc0g 17458  SRingcsrg 20151  SLModcslmd 33202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-riota 7367  df-ov 7413  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-cmn 19768  df-srg 20152  df-slmd 33203
This theorem is referenced by:  slmd0vs  33226
  Copyright terms: Public domain W3C validator