Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0cl | Structured version Visualization version GIF version |
Description: The ring zero in a semimodule belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmd0cl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmd0cl.k | ⊢ 𝐾 = (Base‘𝐹) |
slmd0cl.z | ⊢ 0 = (0g‘𝐹) |
Ref | Expression |
---|---|
slmd0cl | ⊢ (𝑊 ∈ SLMod → 0 ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmd0cl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | slmdsrg 31460 | . 2 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
3 | slmd0cl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
4 | slmd0cl.z | . . 3 ⊢ 0 = (0g‘𝐹) | |
5 | 3, 4 | srg0cl 19755 | . 2 ⊢ (𝐹 ∈ SRing → 0 ∈ 𝐾) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝑊 ∈ SLMod → 0 ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 Basecbs 16912 Scalarcsca 16965 0gc0g 17150 SRingcsrg 19741 SLModcslmd 31453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-cmn 19388 df-srg 19742 df-slmd 31454 |
This theorem is referenced by: slmd0vs 31477 |
Copyright terms: Public domain | W3C validator |