| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snn0d | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| snn0d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| snn0d | ⊢ (𝜑 → {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | snnzg 4726 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-dif 3906 df-nul 4285 df-sn 4578 |
| This theorem is referenced by: 0nelop 5439 rnglidl0 21136 hausflim 23866 flimcf 23867 flimclslem 23869 cnpflf2 23885 cnpflf 23886 neipcfilu 24181 zarclssn 33840 zar0ring 33845 elpaddat 39783 mnuprdlem1 44245 difmapsn 45190 ovnovollem1 46637 ovnovollem3 46639 |
| Copyright terms: Public domain | W3C validator |