Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snn0d | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
snn0d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
snn0d | ⊢ (𝜑 → {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | snnzg 4722 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ≠ wne 2940 ∅c0 4269 {csn 4573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-dif 3901 df-nul 4270 df-sn 4574 |
This theorem is referenced by: 0nelop 5440 hausflim 23238 flimcf 23239 flimclslem 23241 cnpflf2 23257 cnpflf 23258 neipcfilu 23554 zarclssn 32121 zar0ring 32126 elpaddat 38080 mnuprdlem1 42219 difmapsn 43087 ovnovollem1 44539 ovnovollem3 44541 |
Copyright terms: Public domain | W3C validator |