| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snn0d | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| snn0d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| snn0d | ⊢ (𝜑 → {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | snnzg 4724 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-dif 3900 df-nul 4281 df-sn 4574 |
| This theorem is referenced by: 0nelop 5434 rnglidl0 21166 hausflim 23896 flimcf 23897 flimclslem 23899 cnpflf2 23915 cnpflf 23916 neipcfilu 24210 zarclssn 33886 zar0ring 33891 elpaddat 39851 mnuprdlem1 44313 difmapsn 45257 ovnovollem1 46702 ovnovollem3 46704 |
| Copyright terms: Public domain | W3C validator |