MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snn0d Structured version   Visualization version   GIF version

Theorem snn0d 4723
Description: The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
snn0d.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
snn0d (𝜑 → {𝐴} ≠ ∅)

Proof of Theorem snn0d
StepHypRef Expression
1 snn0d.1 . 2 (𝜑𝐴𝑉)
2 snnzg 4722 . 2 (𝐴𝑉 → {𝐴} ≠ ∅)
31, 2syl 17 1 (𝜑 → {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wne 2940  c0 4269  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-dif 3901  df-nul 4270  df-sn 4574
This theorem is referenced by:  0nelop  5440  hausflim  23238  flimcf  23239  flimclslem  23241  cnpflf2  23257  cnpflf  23258  neipcfilu  23554  zarclssn  32121  zar0ring  32126  elpaddat  38080  mnuprdlem1  42219  difmapsn  43087  ovnovollem1  44539  ovnovollem3  44541
  Copyright terms: Public domain W3C validator