MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snn0d Structured version   Visualization version   GIF version

Theorem snn0d 4735
Description: The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
snn0d.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
snn0d (𝜑 → {𝐴} ≠ ∅)

Proof of Theorem snn0d
StepHypRef Expression
1 snn0d.1 . 2 (𝜑𝐴𝑉)
2 snnzg 4734 . 2 (𝐴𝑉 → {𝐴} ≠ ∅)
31, 2syl 17 1 (𝜑 → {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  c0 4292  {csn 4585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-dif 3914  df-nul 4293  df-sn 4586
This theorem is referenced by:  0nelop  5451  rnglidl0  21115  hausflim  23844  flimcf  23845  flimclslem  23847  cnpflf2  23863  cnpflf  23864  neipcfilu  24159  zarclssn  33836  zar0ring  33841  elpaddat  39771  mnuprdlem1  44234  difmapsn  45179  ovnovollem1  46627  ovnovollem3  46629
  Copyright terms: Public domain W3C validator