MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snn0d Structured version   Visualization version   GIF version

Theorem snn0d 4708
Description: The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
snn0d.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
snn0d (𝜑 → {𝐴} ≠ ∅)

Proof of Theorem snn0d
StepHypRef Expression
1 snn0d.1 . 2 (𝜑𝐴𝑉)
2 snnzg 4707 . 2 (𝐴𝑉 → {𝐴} ≠ ∅)
31, 2syl 17 1 (𝜑 → {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2942  c0 4253  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-dif 3886  df-nul 4254  df-sn 4559
This theorem is referenced by:  0nelop  5404  hausflim  23040  flimcf  23041  flimclslem  23043  cnpflf2  23059  cnpflf  23060  neipcfilu  23356  zarclssn  31725  zar0ring  31730  elpaddat  37745  mnuprdlem1  41779  difmapsn  42641  ovnovollem1  44084  ovnovollem3  44086
  Copyright terms: Public domain W3C validator