Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snn0d | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
snn0d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
snn0d | ⊢ (𝜑 → {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | snnzg 4707 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-dif 3886 df-nul 4254 df-sn 4559 |
This theorem is referenced by: 0nelop 5404 hausflim 23040 flimcf 23041 flimclslem 23043 cnpflf2 23059 cnpflf 23060 neipcfilu 23356 zarclssn 31725 zar0ring 31730 elpaddat 37745 mnuprdlem1 41779 difmapsn 42641 ovnovollem1 44084 ovnovollem3 44086 |
Copyright terms: Public domain | W3C validator |