MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflf Structured version   Visualization version   GIF version

Theorem cnpflf 23895
Description: Continuity of a function at a point in terms of filter limits. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
cnpflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
Distinct variable groups:   𝐴,𝑓   𝑓,𝑋   𝑓,𝑌   𝑓,𝐹   𝑓,𝐽   𝑓,𝐾

Proof of Theorem cnpflf
StepHypRef Expression
1 cnpf2 23144 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
213expa 1118 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
323adantl3 1169 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
4 cnpflfi 23893 . . . . . . 7 ((𝐴 ∈ (𝐽 fLim 𝑓) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))
54expcom 413 . . . . . 6 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
65ralrimivw 3130 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
76adantl 481 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
83, 7jca 511 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
98ex 412 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
10 simpl1 1192 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
11 simpl3 1194 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐴𝑋)
12 neiflim 23868 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
1310, 11, 12syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
1411snssd 4776 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → {𝐴} ⊆ 𝑋)
1511snn0d 4742 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → {𝐴} ≠ ∅)
16 neifil 23774 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
1710, 14, 15, 16syl3anc 1373 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
18 oveq2 7398 . . . . . . . . 9 (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐽 fLim 𝑓) = (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
1918eleq2d 2815 . . . . . . . 8 (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐴 ∈ (𝐽 fLim 𝑓) ↔ 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))))
20 oveq2 7398 . . . . . . . . . 10 (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐾 fLimf 𝑓) = (𝐾 fLimf ((nei‘𝐽)‘{𝐴})))
2120fveq1d 6863 . . . . . . . . 9 (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐾 fLimf 𝑓)‘𝐹) = ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))
2221eleq2d 2815 . . . . . . . 8 (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))
2319, 22imbi12d 344 . . . . . . 7 (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
2423rspcv 3587 . . . . . 6 (((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
2517, 24syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
2613, 25mpid 44 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))
2726imdistanda 571 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) → (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
28 eqid 2730 . . . 4 ((nei‘𝐽)‘{𝐴}) = ((nei‘𝐽)‘{𝐴})
2928cnpflf2 23894 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
3027, 29sylibrd 259 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
319, 30impbid 212 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3917  c0 4299  {csn 4592  wf 6510  cfv 6514  (class class class)co 7390  TopOnctopon 22804  neicnei 22991   CnP ccnp 23119  Filcfil 23739   fLim cflim 23828   fLimf cflf 23829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-ntr 22914  df-nei 22992  df-cnp 23122  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834
This theorem is referenced by:  cnflf  23896  cnpfcf  23935
  Copyright terms: Public domain W3C validator