Proof of Theorem cnpflf
Step | Hyp | Ref
| Expression |
1 | | cnpf2 21425 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
2 | 1 | 3expa 1153 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
3 | 2 | 3adantl3 1215 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
4 | | cnpflfi 22173 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝐽 fLim 𝑓) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) |
5 | 4 | expcom 404 |
. . . . . 6
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) |
6 | 5 | ralrimivw 3176 |
. . . . 5
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) |
7 | 6 | adantl 475 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) |
8 | 3, 7 | jca 509 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |
9 | 8 | ex 403 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))) |
10 | | simpl1 1248 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
11 | | simpl3 1252 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐴 ∈ 𝑋) |
12 | | neiflim 22148 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) |
13 | 10, 11, 12 | syl2anc 581 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) |
14 | 11 | snssd 4558 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → {𝐴} ⊆ 𝑋) |
15 | | snnzg 4527 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑋 → {𝐴} ≠ ∅) |
16 | 11, 15 | syl 17 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → {𝐴} ≠ ∅) |
17 | | neifil 22054 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) |
18 | 10, 14, 16, 17 | syl3anc 1496 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) |
19 | | oveq2 6913 |
. . . . . . . . 9
⊢ (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐽 fLim 𝑓) = (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) |
20 | 19 | eleq2d 2892 |
. . . . . . . 8
⊢ (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐴 ∈ (𝐽 fLim 𝑓) ↔ 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))) |
21 | | oveq2 6913 |
. . . . . . . . . 10
⊢ (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐾 fLimf 𝑓) = (𝐾 fLimf ((nei‘𝐽)‘{𝐴}))) |
22 | 21 | fveq1d 6435 |
. . . . . . . . 9
⊢ (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐾 fLimf 𝑓)‘𝐹) = ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)) |
23 | 22 | eleq2d 2892 |
. . . . . . . 8
⊢ (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))) |
24 | 20, 23 | imbi12d 336 |
. . . . . . 7
⊢ (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))) |
25 | 24 | rspcv 3522 |
. . . . . 6
⊢
(((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))) |
26 | 18, 25 | syl 17 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))) |
27 | 13, 26 | mpid 44 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))) |
28 | 27 | imdistanda 569 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) → (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))) |
29 | | eqid 2825 |
. . . 4
⊢
((nei‘𝐽)‘{𝐴}) = ((nei‘𝐽)‘{𝐴}) |
30 | 29 | cnpflf2 22174 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))) |
31 | 28, 30 | sylibrd 251 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))) |
32 | 9, 31 | impbid 204 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))) |