Proof of Theorem cnpflf
| Step | Hyp | Ref
| Expression |
| 1 | | cnpf2 23193 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
| 2 | 1 | 3expa 1118 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
| 3 | 2 | 3adantl3 1169 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
| 4 | | cnpflfi 23942 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝐽 fLim 𝑓) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) |
| 5 | 4 | expcom 413 |
. . . . . 6
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) |
| 6 | 5 | ralrimivw 3137 |
. . . . 5
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) |
| 7 | 6 | adantl 481 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) |
| 8 | 3, 7 | jca 511 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |
| 9 | 8 | ex 412 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))) |
| 10 | | simpl1 1192 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
| 11 | | simpl3 1194 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐴 ∈ 𝑋) |
| 12 | | neiflim 23917 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) |
| 13 | 10, 11, 12 | syl2anc 584 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) |
| 14 | 11 | snssd 4790 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → {𝐴} ⊆ 𝑋) |
| 15 | 11 | snn0d 4756 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → {𝐴} ≠ ∅) |
| 16 | | neifil 23823 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) |
| 17 | 10, 14, 15, 16 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) |
| 18 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐽 fLim 𝑓) = (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) |
| 19 | 18 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐴 ∈ (𝐽 fLim 𝑓) ↔ 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))) |
| 20 | | oveq2 7418 |
. . . . . . . . . 10
⊢ (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐾 fLimf 𝑓) = (𝐾 fLimf ((nei‘𝐽)‘{𝐴}))) |
| 21 | 20 | fveq1d 6883 |
. . . . . . . . 9
⊢ (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐾 fLimf 𝑓)‘𝐹) = ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)) |
| 22 | 21 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))) |
| 23 | 19, 22 | imbi12d 344 |
. . . . . . 7
⊢ (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))) |
| 24 | 23 | rspcv 3602 |
. . . . . 6
⊢
(((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))) |
| 25 | 17, 24 | syl 17 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))) |
| 26 | 13, 25 | mpid 44 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))) |
| 27 | 26 | imdistanda 571 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) → (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))) |
| 28 | | eqid 2736 |
. . . 4
⊢
((nei‘𝐽)‘{𝐴}) = ((nei‘𝐽)‘{𝐴}) |
| 29 | 28 | cnpflf2 23943 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))) |
| 30 | 27, 29 | sylibrd 259 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))) |
| 31 | 9, 30 | impbid 212 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))) |