MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflf Structured version   Visualization version   GIF version

Theorem cnpflf 23888
Description: Continuity of a function at a point in terms of filter limits. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
cnpflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
Distinct variable groups:   𝐴,𝑓   𝑓,𝑋   𝑓,𝑌   𝑓,𝐹   𝑓,𝐽   𝑓,𝐾

Proof of Theorem cnpflf
StepHypRef Expression
1 cnpf2 23137 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
213expa 1118 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
323adantl3 1169 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
4 cnpflfi 23886 . . . . . . 7 ((𝐴 ∈ (𝐽 fLim 𝑓) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))
54expcom 413 . . . . . 6 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
65ralrimivw 3129 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
76adantl 481 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
83, 7jca 511 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
98ex 412 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
10 simpl1 1192 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
11 simpl3 1194 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐴𝑋)
12 neiflim 23861 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
1310, 11, 12syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
1411snssd 4773 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → {𝐴} ⊆ 𝑋)
1511snn0d 4739 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → {𝐴} ≠ ∅)
16 neifil 23767 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
1710, 14, 15, 16syl3anc 1373 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
18 oveq2 7395 . . . . . . . . 9 (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐽 fLim 𝑓) = (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
1918eleq2d 2814 . . . . . . . 8 (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐴 ∈ (𝐽 fLim 𝑓) ↔ 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))))
20 oveq2 7395 . . . . . . . . . 10 (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐾 fLimf 𝑓) = (𝐾 fLimf ((nei‘𝐽)‘{𝐴})))
2120fveq1d 6860 . . . . . . . . 9 (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐾 fLimf 𝑓)‘𝐹) = ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))
2221eleq2d 2814 . . . . . . . 8 (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))
2319, 22imbi12d 344 . . . . . . 7 (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
2423rspcv 3584 . . . . . 6 (((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
2517, 24syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
2613, 25mpid 44 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))
2726imdistanda 571 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) → (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
28 eqid 2729 . . . 4 ((nei‘𝐽)‘{𝐴}) = ((nei‘𝐽)‘{𝐴})
2928cnpflf2 23887 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
3027, 29sylibrd 259 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
319, 30impbid 212 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  c0 4296  {csn 4589  wf 6507  cfv 6511  (class class class)co 7387  TopOnctopon 22797  neicnei 22984   CnP ccnp 23112  Filcfil 23732   fLim cflim 23821   fLimf cflf 23822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-fbas 21261  df-fg 21262  df-top 22781  df-topon 22798  df-ntr 22907  df-nei 22985  df-cnp 23115  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827
This theorem is referenced by:  cnflf  23889  cnpfcf  23928
  Copyright terms: Public domain W3C validator