| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zar0ring | Structured version Visualization version GIF version | ||
| Description: The Zariski Topology of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
| Ref | Expression |
|---|---|
| zartop.1 | ⊢ 𝑆 = (Spec‘𝑅) |
| zartop.2 | ⊢ 𝐽 = (TopOpen‘𝑆) |
| zar0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| zar0ring | ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zartop.2 | . . 3 ⊢ 𝐽 = (TopOpen‘𝑆) | |
| 2 | zartop.1 | . . . . 5 ⊢ 𝑆 = (Spec‘𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅) | |
| 5 | eqid 2729 | . . . . 5 ⊢ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) | |
| 6 | 2, 3, 4, 5 | rspectopn 33857 | . . . 4 ⊢ (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = (TopOpen‘𝑆)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = (TopOpen‘𝑆)) |
| 8 | 1, 7 | eqtr4id 2783 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗})) |
| 9 | fvex 6871 | . . . . . 6 ⊢ (PrmIdeal‘𝑅) ∈ V | |
| 10 | 9 | rabex 5294 | . . . . 5 ⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗} ∈ V |
| 11 | eqid 2729 | . . . . 5 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) | |
| 12 | 10, 11 | fnmpti 6661 | . . . 4 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) Fn (LIdeal‘𝑅) |
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) Fn (LIdeal‘𝑅)) |
| 14 | zar0ring.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 15 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 16 | 14, 15 | 0ringidl 33392 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) = {{(0g‘𝑅)}}) |
| 17 | snex 5391 | . . . . . 6 ⊢ {(0g‘𝑅)} ∈ V | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {(0g‘𝑅)} ∈ V) |
| 19 | 18 | snn0d 4739 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {{(0g‘𝑅)}} ≠ ∅) |
| 20 | 16, 19 | eqnetrd 2992 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) ≠ ∅) |
| 21 | 14 | 0ringprmidl 33420 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (PrmIdeal‘𝑅) = ∅) |
| 22 | 21 | rabeqdv 3421 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗} = {𝑗 ∈ ∅ ∣ ¬ 𝑖 ⊆ 𝑗}) |
| 23 | rab0 4349 | . . . . . 6 ⊢ {𝑗 ∈ ∅ ∣ ¬ 𝑖 ⊆ 𝑗} = ∅ | |
| 24 | 22, 23 | eqtrdi 2780 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗} = ∅) |
| 25 | 24 | mpteq2dv 5201 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ ∅)) |
| 26 | fconstmpt 5700 | . . . 4 ⊢ ((LIdeal‘𝑅) × {∅}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ ∅) | |
| 27 | 25, 26 | eqtr4di 2782 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = ((LIdeal‘𝑅) × {∅})) |
| 28 | fconst5 7180 | . . . 4 ⊢ (((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) Fn (LIdeal‘𝑅) ∧ (LIdeal‘𝑅) ≠ ∅) → ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = ((LIdeal‘𝑅) × {∅}) ↔ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = {∅})) | |
| 29 | 28 | biimpa 476 | . . 3 ⊢ ((((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) Fn (LIdeal‘𝑅) ∧ (LIdeal‘𝑅) ≠ ∅) ∧ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = ((LIdeal‘𝑅) × {∅})) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = {∅}) |
| 30 | 13, 20, 27, 29 | syl21anc 837 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = {∅}) |
| 31 | 8, 30 | eqtrd 2764 | 1 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3405 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 {csn 4589 ↦ cmpt 5188 × cxp 5636 ran crn 5639 Fn wfn 6506 ‘cfv 6511 1c1 11069 ♯chash 14295 Basecbs 17179 TopOpenctopn 17384 0gc0g 17402 Ringcrg 20142 LIdealclidl 21116 PrmIdealcprmidl 33406 Speccrspec 33852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-rest 17385 df-topn 17386 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrg 20479 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-prmidl 33407 df-idlsrg 33472 df-rspec 33853 |
| This theorem is referenced by: zarcmplem 33871 |
| Copyright terms: Public domain | W3C validator |