Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zar0ring Structured version   Visualization version   GIF version

Theorem zar0ring 31231
 Description: The Zariski Topology of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zar0ring.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
zar0ring ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = {∅})

Proof of Theorem zar0ring
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zartop.2 . . 3 𝐽 = (TopOpen‘𝑆)
2 zartop.1 . . . . 5 𝑆 = (Spec‘𝑅)
3 eqid 2801 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
4 eqid 2801 . . . . 5 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
5 eqid 2801 . . . . 5 ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗})
62, 3, 4, 5rspectopn 31220 . . . 4 (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) = (TopOpen‘𝑆))
76adantr 484 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) = (TopOpen‘𝑆))
81, 7eqtr4id 2855 . 2 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}))
9 fvex 6662 . . . . . 6 (PrmIdeal‘𝑅) ∈ V
109rabex 5202 . . . . 5 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗} ∈ V
11 eqid 2801 . . . . 5 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗})
1210, 11fnmpti 6467 . . . 4 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) Fn (LIdeal‘𝑅)
1312a1i 11 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) Fn (LIdeal‘𝑅))
14 zar0ring.b . . . . 5 𝐵 = (Base‘𝑅)
15 eqid 2801 . . . . 5 (0g𝑅) = (0g𝑅)
1614, 150ringidl 31016 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) = {{(0g𝑅)}})
17 snex 5300 . . . . . 6 {(0g𝑅)} ∈ V
1817a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {(0g𝑅)} ∈ V)
1918snn0d 4674 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {{(0g𝑅)}} ≠ ∅)
2016, 19eqnetrd 3057 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) ≠ ∅)
21140ringprmidl 31033 . . . . . . 7 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (PrmIdeal‘𝑅) = ∅)
2221rabeqdv 3435 . . . . . 6 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗} = {𝑗 ∈ ∅ ∣ ¬ 𝑖𝑗})
23 rab0 4294 . . . . . 6 {𝑗 ∈ ∅ ∣ ¬ 𝑖𝑗} = ∅
2422, 23eqtrdi 2852 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗} = ∅)
2524mpteq2dv 5129 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ ∅))
26 fconstmpt 5582 . . . 4 ((LIdeal‘𝑅) × {∅}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ ∅)
2725, 26eqtr4di 2854 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) = ((LIdeal‘𝑅) × {∅}))
28 fconst5 6949 . . . 4 (((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) Fn (LIdeal‘𝑅) ∧ (LIdeal‘𝑅) ≠ ∅) → ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) = ((LIdeal‘𝑅) × {∅}) ↔ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) = {∅}))
2928biimpa 480 . . 3 ((((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) Fn (LIdeal‘𝑅) ∧ (LIdeal‘𝑅) ≠ ∅) ∧ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) = ((LIdeal‘𝑅) × {∅})) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) = {∅})
3013, 20, 27, 29syl21anc 836 . 2 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖𝑗}) = {∅})
318, 30eqtrd 2836 1 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = {∅})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  {crab 3113  Vcvv 3444   ⊆ wss 3884  ∅c0 4246  {csn 4528   ↦ cmpt 5113   × cxp 5521  ran crn 5524   Fn wfn 6323  ‘cfv 6328  1c1 10531  ♯chash 13690  Basecbs 16478  TopOpenctopn 16690  0gc0g 16708  Ringcrg 19293  LIdealclidl 19938  PrmIdealcprmidl 31018  Speccrspec 31215 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-hash 13691  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-rest 16691  df-topn 16692  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-mgp 19236  df-ur 19248  df-ring 19295  df-subrg 19529  df-lmod 19632  df-lss 19700  df-sra 19940  df-rgmod 19941  df-lidl 19942  df-prmidl 31019  df-idlsrg 31054  df-rspec 31216 This theorem is referenced by:  zarcmplem  31234
 Copyright terms: Public domain W3C validator