|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zar0ring | Structured version Visualization version GIF version | ||
| Description: The Zariski Topology of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024.) | 
| Ref | Expression | 
|---|---|
| zartop.1 | ⊢ 𝑆 = (Spec‘𝑅) | 
| zartop.2 | ⊢ 𝐽 = (TopOpen‘𝑆) | 
| zar0ring.b | ⊢ 𝐵 = (Base‘𝑅) | 
| Ref | Expression | 
|---|---|
| zar0ring | ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = {∅}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zartop.2 | . . 3 ⊢ 𝐽 = (TopOpen‘𝑆) | |
| 2 | zartop.1 | . . . . 5 ⊢ 𝑆 = (Spec‘𝑅) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅) | |
| 5 | eqid 2736 | . . . . 5 ⊢ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) | |
| 6 | 2, 3, 4, 5 | rspectopn 33867 | . . . 4 ⊢ (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = (TopOpen‘𝑆)) | 
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = (TopOpen‘𝑆)) | 
| 8 | 1, 7 | eqtr4id 2795 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗})) | 
| 9 | fvex 6918 | . . . . . 6 ⊢ (PrmIdeal‘𝑅) ∈ V | |
| 10 | 9 | rabex 5338 | . . . . 5 ⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗} ∈ V | 
| 11 | eqid 2736 | . . . . 5 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) | |
| 12 | 10, 11 | fnmpti 6710 | . . . 4 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) Fn (LIdeal‘𝑅) | 
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) Fn (LIdeal‘𝑅)) | 
| 14 | zar0ring.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 15 | eqid 2736 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 16 | 14, 15 | 0ringidl 33450 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) = {{(0g‘𝑅)}}) | 
| 17 | snex 5435 | . . . . . 6 ⊢ {(0g‘𝑅)} ∈ V | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {(0g‘𝑅)} ∈ V) | 
| 19 | 18 | snn0d 4774 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {{(0g‘𝑅)}} ≠ ∅) | 
| 20 | 16, 19 | eqnetrd 3007 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) ≠ ∅) | 
| 21 | 14 | 0ringprmidl 33478 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (PrmIdeal‘𝑅) = ∅) | 
| 22 | 21 | rabeqdv 3451 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗} = {𝑗 ∈ ∅ ∣ ¬ 𝑖 ⊆ 𝑗}) | 
| 23 | rab0 4385 | . . . . . 6 ⊢ {𝑗 ∈ ∅ ∣ ¬ 𝑖 ⊆ 𝑗} = ∅ | |
| 24 | 22, 23 | eqtrdi 2792 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗} = ∅) | 
| 25 | 24 | mpteq2dv 5243 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ ∅)) | 
| 26 | fconstmpt 5746 | . . . 4 ⊢ ((LIdeal‘𝑅) × {∅}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ ∅) | |
| 27 | 25, 26 | eqtr4di 2794 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = ((LIdeal‘𝑅) × {∅})) | 
| 28 | fconst5 7227 | . . . 4 ⊢ (((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) Fn (LIdeal‘𝑅) ∧ (LIdeal‘𝑅) ≠ ∅) → ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = ((LIdeal‘𝑅) × {∅}) ↔ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = {∅})) | |
| 29 | 28 | biimpa 476 | . . 3 ⊢ ((((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) Fn (LIdeal‘𝑅) ∧ (LIdeal‘𝑅) ≠ ∅) ∧ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = ((LIdeal‘𝑅) × {∅})) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = {∅}) | 
| 30 | 13, 20, 27, 29 | syl21anc 837 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = {∅}) | 
| 31 | 8, 30 | eqtrd 2776 | 1 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = {∅}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 {crab 3435 Vcvv 3479 ⊆ wss 3950 ∅c0 4332 {csn 4625 ↦ cmpt 5224 × cxp 5682 ran crn 5685 Fn wfn 6555 ‘cfv 6560 1c1 11157 ♯chash 14370 Basecbs 17248 TopOpenctopn 17467 0gc0g 17485 Ringcrg 20231 LIdealclidl 21217 PrmIdealcprmidl 33464 Speccrspec 33862 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-rest 17468 df-topn 17469 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-sbg 18957 df-subg 19142 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-subrg 20571 df-lmod 20861 df-lss 20931 df-sra 21173 df-rgmod 21174 df-lidl 21219 df-prmidl 33465 df-idlsrg 33530 df-rspec 33863 | 
| This theorem is referenced by: zarcmplem 33881 | 
| Copyright terms: Public domain | W3C validator |