Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zar0ring | Structured version Visualization version GIF version |
Description: The Zariski Topology of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
Ref | Expression |
---|---|
zartop.1 | ⊢ 𝑆 = (Spec‘𝑅) |
zartop.2 | ⊢ 𝐽 = (TopOpen‘𝑆) |
zar0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
zar0ring | ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zartop.2 | . . 3 ⊢ 𝐽 = (TopOpen‘𝑆) | |
2 | zartop.1 | . . . . 5 ⊢ 𝑆 = (Spec‘𝑅) | |
3 | eqid 2738 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
4 | eqid 2738 | . . . . 5 ⊢ (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅) | |
5 | eqid 2738 | . . . . 5 ⊢ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) | |
6 | 2, 3, 4, 5 | rspectopn 31719 | . . . 4 ⊢ (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = (TopOpen‘𝑆)) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = (TopOpen‘𝑆)) |
8 | 1, 7 | eqtr4id 2798 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗})) |
9 | fvex 6769 | . . . . . 6 ⊢ (PrmIdeal‘𝑅) ∈ V | |
10 | 9 | rabex 5251 | . . . . 5 ⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗} ∈ V |
11 | eqid 2738 | . . . . 5 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) | |
12 | 10, 11 | fnmpti 6560 | . . . 4 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) Fn (LIdeal‘𝑅) |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) Fn (LIdeal‘𝑅)) |
14 | zar0ring.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
15 | eqid 2738 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
16 | 14, 15 | 0ringidl 31507 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) = {{(0g‘𝑅)}}) |
17 | snex 5349 | . . . . . 6 ⊢ {(0g‘𝑅)} ∈ V | |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {(0g‘𝑅)} ∈ V) |
19 | 18 | snn0d 4708 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {{(0g‘𝑅)}} ≠ ∅) |
20 | 16, 19 | eqnetrd 3010 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) ≠ ∅) |
21 | 14 | 0ringprmidl 31527 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (PrmIdeal‘𝑅) = ∅) |
22 | 21 | rabeqdv 3409 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗} = {𝑗 ∈ ∅ ∣ ¬ 𝑖 ⊆ 𝑗}) |
23 | rab0 4313 | . . . . . 6 ⊢ {𝑗 ∈ ∅ ∣ ¬ 𝑖 ⊆ 𝑗} = ∅ | |
24 | 22, 23 | eqtrdi 2795 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗} = ∅) |
25 | 24 | mpteq2dv 5172 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ ∅)) |
26 | fconstmpt 5640 | . . . 4 ⊢ ((LIdeal‘𝑅) × {∅}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ ∅) | |
27 | 25, 26 | eqtr4di 2797 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = ((LIdeal‘𝑅) × {∅})) |
28 | fconst5 7063 | . . . 4 ⊢ (((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) Fn (LIdeal‘𝑅) ∧ (LIdeal‘𝑅) ≠ ∅) → ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = ((LIdeal‘𝑅) × {∅}) ↔ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = {∅})) | |
29 | 28 | biimpa 476 | . . 3 ⊢ ((((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) Fn (LIdeal‘𝑅) ∧ (LIdeal‘𝑅) ≠ ∅) ∧ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = ((LIdeal‘𝑅) × {∅})) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = {∅}) |
30 | 13, 20, 27, 29 | syl21anc 834 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ ¬ 𝑖 ⊆ 𝑗}) = {∅}) |
31 | 8, 30 | eqtrd 2778 | 1 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 {csn 4558 ↦ cmpt 5153 × cxp 5578 ran crn 5581 Fn wfn 6413 ‘cfv 6418 1c1 10803 ♯chash 13972 Basecbs 16840 TopOpenctopn 17049 0gc0g 17067 Ringcrg 19698 LIdealclidl 20347 PrmIdealcprmidl 31512 Speccrspec 31714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-rest 17050 df-topn 17051 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-lidl 20351 df-prmidl 31513 df-idlsrg 31548 df-rspec 31715 |
This theorem is referenced by: zarcmplem 31733 |
Copyright terms: Public domain | W3C validator |