![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpaddat | Structured version Visualization version GIF version |
Description: Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012.) |
Ref | Expression |
---|---|
paddfval.l | ⊢ ≤ = (le‘𝐾) |
paddfval.j | ⊢ ∨ = (join‘𝐾) |
paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddfval.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
elpaddat | ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → 𝐾 ∈ Lat) | |
2 | simpl2 1192 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → 𝑋 ⊆ 𝐴) | |
3 | simpl3 1193 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → 𝑄 ∈ 𝐴) | |
4 | 3 | snssd 4834 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ⊆ 𝐴) |
5 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) | |
6 | 3 | snn0d 4800 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ≠ ∅) |
7 | paddfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
8 | paddfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
9 | paddfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | paddfval.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
11 | 7, 8, 9, 10 | elpaddn0 39757 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ {𝑄} ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ {𝑄} ≠ ∅)) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟)))) |
12 | 1, 2, 4, 5, 6, 11 | syl32anc 1378 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟)))) |
13 | oveq2 7456 | . . . . . . 7 ⊢ (𝑟 = 𝑄 → (𝑝 ∨ 𝑟) = (𝑝 ∨ 𝑄)) | |
14 | 13 | breq2d 5178 | . . . . . 6 ⊢ (𝑟 = 𝑄 → (𝑆 ≤ (𝑝 ∨ 𝑟) ↔ 𝑆 ≤ (𝑝 ∨ 𝑄))) |
15 | 14 | rexsng 4698 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → (∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟) ↔ 𝑆 ≤ (𝑝 ∨ 𝑄))) |
16 | 3, 15 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟) ↔ 𝑆 ≤ (𝑝 ∨ 𝑄))) |
17 | 16 | rexbidv 3185 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑝 ∈ 𝑋 ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟) ↔ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄))) |
18 | 17 | anbi2d 629 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → ((𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟)) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄)))) |
19 | 12, 18 | bitrd 279 | 1 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 {csn 4648 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 lecple 17318 joincjn 18381 Latclat 18501 Atomscatm 39219 +𝑃cpadd 39752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-lub 18416 df-join 18418 df-lat 18502 df-ats 39223 df-padd 39753 |
This theorem is referenced by: elpaddatiN 39762 elpadd2at 39763 pclfinclN 39907 |
Copyright terms: Public domain | W3C validator |