Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddat Structured version   Visualization version   GIF version

Theorem elpaddat 39828
Description: Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddat (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋 𝑆 (𝑝 𝑄))))
Distinct variable groups:   𝐴,𝑝   𝐾,𝑝   𝑋,𝑝   ,𝑝   ,𝑝   𝑆,𝑝   𝑄,𝑝
Allowed substitution hint:   + (𝑝)

Proof of Theorem elpaddat
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝐾 ∈ Lat)
2 simpl2 1193 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝑋𝐴)
3 simpl3 1194 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝑄𝐴)
43snssd 4790 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ⊆ 𝐴)
5 simpr 484 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅)
63snn0d 4756 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ≠ ∅)
7 paddfval.l . . . 4 = (le‘𝐾)
8 paddfval.j . . . 4 = (join‘𝐾)
9 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
10 paddfval.p . . . 4 + = (+𝑃𝐾)
117, 8, 9, 10elpaddn0 39824 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ {𝑄} ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ {𝑄} ≠ ∅)) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟))))
121, 2, 4, 5, 6, 11syl32anc 1380 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟))))
13 oveq2 7418 . . . . . . 7 (𝑟 = 𝑄 → (𝑝 𝑟) = (𝑝 𝑄))
1413breq2d 5136 . . . . . 6 (𝑟 = 𝑄 → (𝑆 (𝑝 𝑟) ↔ 𝑆 (𝑝 𝑄)))
1514rexsng 4657 . . . . 5 (𝑄𝐴 → (∃𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟) ↔ 𝑆 (𝑝 𝑄)))
163, 15syl 17 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟) ↔ 𝑆 (𝑝 𝑄)))
1716rexbidv 3165 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟) ↔ ∃𝑝𝑋 𝑆 (𝑝 𝑄)))
1817anbi2d 630 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → ((𝑆𝐴 ∧ ∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟)) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋 𝑆 (𝑝 𝑄))))
1912, 18bitrd 279 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋 𝑆 (𝑝 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  wss 3931  c0 4313  {csn 4606   class class class wbr 5124  cfv 6536  (class class class)co 7410  lecple 17283  joincjn 18328  Latclat 18446  Atomscatm 39286  +𝑃cpadd 39819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-lub 18361  df-join 18363  df-lat 18447  df-ats 39290  df-padd 39820
This theorem is referenced by:  elpaddatiN  39829  elpadd2at  39830  pclfinclN  39974
  Copyright terms: Public domain W3C validator