Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpaddat | Structured version Visualization version GIF version |
Description: Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012.) |
Ref | Expression |
---|---|
paddfval.l | ⊢ ≤ = (le‘𝐾) |
paddfval.j | ⊢ ∨ = (join‘𝐾) |
paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddfval.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
elpaddat | ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1193 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → 𝐾 ∈ Lat) | |
2 | simpl2 1194 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → 𝑋 ⊆ 𝐴) | |
3 | simpl3 1195 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → 𝑄 ∈ 𝐴) | |
4 | 3 | snssd 4722 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ⊆ 𝐴) |
5 | simpr 488 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) | |
6 | 3 | snn0d 4691 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ≠ ∅) |
7 | paddfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
8 | paddfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
9 | paddfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | paddfval.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
11 | 7, 8, 9, 10 | elpaddn0 37551 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ {𝑄} ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ {𝑄} ≠ ∅)) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟)))) |
12 | 1, 2, 4, 5, 6, 11 | syl32anc 1380 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟)))) |
13 | oveq2 7221 | . . . . . . 7 ⊢ (𝑟 = 𝑄 → (𝑝 ∨ 𝑟) = (𝑝 ∨ 𝑄)) | |
14 | 13 | breq2d 5065 | . . . . . 6 ⊢ (𝑟 = 𝑄 → (𝑆 ≤ (𝑝 ∨ 𝑟) ↔ 𝑆 ≤ (𝑝 ∨ 𝑄))) |
15 | 14 | rexsng 4590 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → (∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟) ↔ 𝑆 ≤ (𝑝 ∨ 𝑄))) |
16 | 3, 15 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟) ↔ 𝑆 ≤ (𝑝 ∨ 𝑄))) |
17 | 16 | rexbidv 3216 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑝 ∈ 𝑋 ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟) ↔ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄))) |
18 | 17 | anbi2d 632 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → ((𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟)) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄)))) |
19 | 12, 18 | bitrd 282 | 1 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∃wrex 3062 ⊆ wss 3866 ∅c0 4237 {csn 4541 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 lecple 16809 joincjn 17818 Latclat 17937 Atomscatm 37014 +𝑃cpadd 37546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-lub 17852 df-join 17854 df-lat 17938 df-ats 37018 df-padd 37547 |
This theorem is referenced by: elpaddatiN 37556 elpadd2at 37557 pclfinclN 37701 |
Copyright terms: Public domain | W3C validator |