Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddat Structured version   Visualization version   GIF version

Theorem elpaddat 38080
Description: Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddat (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋 𝑆 (𝑝 𝑄))))
Distinct variable groups:   𝐴,𝑝   𝐾,𝑝   𝑋,𝑝   ,𝑝   ,𝑝   𝑆,𝑝   𝑄,𝑝
Allowed substitution hint:   + (𝑝)

Proof of Theorem elpaddat
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝐾 ∈ Lat)
2 simpl2 1191 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝑋𝐴)
3 simpl3 1192 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝑄𝐴)
43snssd 4756 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ⊆ 𝐴)
5 simpr 485 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅)
63snn0d 4723 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ≠ ∅)
7 paddfval.l . . . 4 = (le‘𝐾)
8 paddfval.j . . . 4 = (join‘𝐾)
9 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
10 paddfval.p . . . 4 + = (+𝑃𝐾)
117, 8, 9, 10elpaddn0 38076 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ {𝑄} ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ {𝑄} ≠ ∅)) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟))))
121, 2, 4, 5, 6, 11syl32anc 1377 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟))))
13 oveq2 7345 . . . . . . 7 (𝑟 = 𝑄 → (𝑝 𝑟) = (𝑝 𝑄))
1413breq2d 5104 . . . . . 6 (𝑟 = 𝑄 → (𝑆 (𝑝 𝑟) ↔ 𝑆 (𝑝 𝑄)))
1514rexsng 4622 . . . . 5 (𝑄𝐴 → (∃𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟) ↔ 𝑆 (𝑝 𝑄)))
163, 15syl 17 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟) ↔ 𝑆 (𝑝 𝑄)))
1716rexbidv 3171 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟) ↔ ∃𝑝𝑋 𝑆 (𝑝 𝑄)))
1817anbi2d 629 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → ((𝑆𝐴 ∧ ∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟)) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋 𝑆 (𝑝 𝑄))))
1912, 18bitrd 278 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋 𝑆 (𝑝 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wrex 3070  wss 3898  c0 4269  {csn 4573   class class class wbr 5092  cfv 6479  (class class class)co 7337  lecple 17066  joincjn 18126  Latclat 18246  Atomscatm 37538  +𝑃cpadd 38071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-lub 18161  df-join 18163  df-lat 18247  df-ats 37542  df-padd 38072
This theorem is referenced by:  elpaddatiN  38081  elpadd2at  38082  pclfinclN  38226
  Copyright terms: Public domain W3C validator