Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddat Structured version   Visualization version   GIF version

Theorem elpaddat 37555
Description: Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddat (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋 𝑆 (𝑝 𝑄))))
Distinct variable groups:   𝐴,𝑝   𝐾,𝑝   𝑋,𝑝   ,𝑝   ,𝑝   𝑆,𝑝   𝑄,𝑝
Allowed substitution hint:   + (𝑝)

Proof of Theorem elpaddat
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1193 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝐾 ∈ Lat)
2 simpl2 1194 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝑋𝐴)
3 simpl3 1195 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝑄𝐴)
43snssd 4722 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ⊆ 𝐴)
5 simpr 488 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅)
63snn0d 4691 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ≠ ∅)
7 paddfval.l . . . 4 = (le‘𝐾)
8 paddfval.j . . . 4 = (join‘𝐾)
9 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
10 paddfval.p . . . 4 + = (+𝑃𝐾)
117, 8, 9, 10elpaddn0 37551 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ {𝑄} ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ {𝑄} ≠ ∅)) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟))))
121, 2, 4, 5, 6, 11syl32anc 1380 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟))))
13 oveq2 7221 . . . . . . 7 (𝑟 = 𝑄 → (𝑝 𝑟) = (𝑝 𝑄))
1413breq2d 5065 . . . . . 6 (𝑟 = 𝑄 → (𝑆 (𝑝 𝑟) ↔ 𝑆 (𝑝 𝑄)))
1514rexsng 4590 . . . . 5 (𝑄𝐴 → (∃𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟) ↔ 𝑆 (𝑝 𝑄)))
163, 15syl 17 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟) ↔ 𝑆 (𝑝 𝑄)))
1716rexbidv 3216 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟) ↔ ∃𝑝𝑋 𝑆 (𝑝 𝑄)))
1817anbi2d 632 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → ((𝑆𝐴 ∧ ∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟)) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋 𝑆 (𝑝 𝑄))))
1912, 18bitrd 282 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋 𝑆 (𝑝 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wrex 3062  wss 3866  c0 4237  {csn 4541   class class class wbr 5053  cfv 6380  (class class class)co 7213  lecple 16809  joincjn 17818  Latclat 17937  Atomscatm 37014  +𝑃cpadd 37546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-lub 17852  df-join 17854  df-lat 17938  df-ats 37018  df-padd 37547
This theorem is referenced by:  elpaddatiN  37556  elpadd2at  37557  pclfinclN  37701
  Copyright terms: Public domain W3C validator